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Product Overview

Symbolic Math Toolbox™ software lets you to perform symbolic computations
within the MATLAB® numeric environment. It provides tools for solving and
manipulating symbolic math expressions and performing variable-precision
arithmetic. The toolbox contains hundreds of symbolic functions that leverage
the MuPAD® engine for a broad range of mathematical tasks such as:

Differentiation

Integration

Linear algebraic operations
Simplification

Transforms
Variable-precision arithmetic

Equation solving

Symbolic Math Toolbox software also includes the MuPAD language, which
is optimized for handling and operating on symbolic math expressions. In
addition to covering common mathematical tasks, the libraries of MuPAD
functions cover specialized areas such as number theory and combinatorics.
You can extend the built-in functionality by writing custom symbolic functions
and libraries in the MuPAD language.



Accessing Symbolic Math Toolbox™ Functionality

Accessing Symbolic Math Toolbox Functionality

Key Features

Symbolic Math Toolbox software provides a complete set of tools for symbolic
computing that augments the numeric capabilities of MATLAB. The toolbox
includes extensive symbolic functionality that you can access directly from
the MATLAB command line or from the MuPAD Notebook Interface. You can
extend the functionality available in the toolbox by writing custom symbolic
functions or libraries in the MuPAD language.

Working from MATLAB

You can access the Symbolic Math Toolbox functionality directly from the
MATLAB Command Window. This environment lets you call functions using
familiar MATLAB syntax.

The MATLAB Help browser presents the documentation that covers working
from the MATLAB Command Window. To access the MATLAB Help browser,
you can:

¢ Select Help > Product Help , and then select Symbolic Math Toolbox
in the left pane

e Enter doc at theMATLAB command line

If you are a new user, begin with Chapter 2, “Getting Started”

Working from MuPAD

Also you can access the Symbolic Math Toolbox functionality from the MuPAD
Notebook Interface using the MuPAD language. The MuPAD Notebook
Interface includes a symbol palette for accessing common MuPAD functions.
All results are displayed in typeset math. You also can convert the results
into MathML and TeX. You can embed graphics, animations, and descriptive
text within your notebook.

An editor, debugger, and other programming utilities provide tools for

authoring custom symbolic functions and libraries in the MuPAD language.
The MuPAD language supports multiple programming styles including

1-3
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imperative, functional, and object-oriented programming. The language treats
variables as symbolic by default and is optimized for handling and operating
on symbolic math expressions. You can call functions written in the MuPAD
language from the MATLAB Command Window. For more information see
“Calling MuPAD Functions at the MATLAB Command Line” on page 4-28

The MuPAD Help browser presents documentation covering the MuPAD
Notebook Interface. To access the MuPAD Help browser :

®* From the MuPAD Notebook Interface, select Help > Open Help

* From the MATLAB Command Window, enter doc (symengine).

If you are a new user of the MuPAD Notebook Interface, read the Getting
Started chapter of the MuPAD documentation.

There 1s also a MuPAD Tutorial PDF file available at
http://www.mathworks.com/access/helpdesk/...
help/pdf_doc/symbolic/mupad_tutorial.pdf


http://www.mathworks.com/access/helpdesk/help/pdf_doc/symbolic/mupad_tutorial.pdf
http://www.mathworks.com/access/helpdesk/help/pdf_doc/symbolic/mupad_tutorial.pdf

Getting Started

® “Symbolic Objects” on page 2-2
® “Creating Symbolic Variables and Expressions” on page 2-6
® “Performing Symbolic Computations” on page 2-12

® “Assumptions for Symbolic Objects” on page 2-30
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Symbolic Objects

In this section...

“Overview” on page 2-2

“Symbolic Variables” on page 2-2

“Symbolic Numbers” on page 2-3

Overview
Symbolic objects are a special MATLAB data type introduced by the Symbolic

Math Toolbox software. They allow you to perform mathematical operations
in the MATLAB workspace analytically, without calculating numeric
values. You can use symbolic objects to perform a wide variety of analytical
computations:

¢ Differentiation, including partial differentiation

® Definite and indefinite integration

¢ Taking limits, including one-sided limits

® Summation, including Taylor series

® Matrix operations

® Solving algebraic and differential equations

e Variable-precision arithmetic

® Integral transforms

Symbolic objects present symbolic variables, symbolic numbers, symbolic
expressions and symbolic matrices.

Symbolic Variables

To declare variables x and y as symbolic objects use the syms command:

syms X y



Symbolic Objects

You can manipulate the symbolic objects according to the usual rules of
mathematics. For example:

X+ x +y

ans =
2*X +y

You also can create formal symbolic mathematical expressions and symbolic
matrices. See “Creating Symbolic Variables and Expressions” on page 2-6
for more information.

Symbolic Numbers

Symbolic Math Toolbox software also enables you to convert numbers to
symbolic objects. To create a symbolic number, use the sym command:

a =sym('2")

If you create a symbolic number with 10 or fewer decimal digits, you can
skip the quotes:

a = sym(2)

The following example illustrates the difference between a standard
double-precision MATLAB data and the corresponding symbolic number.
The MATLAB command

sqrt(2)
returns a double-precision floating-point number:

ans =
1.4142

On the other hand, if you calculate a square root of a symbolic number 2:
a = sqrt(sym(2))

you get the precise symbolic result:

a
27(1/2)

2-3
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Symbolic results are not indented. Standard MATLAB double-precision
results are indented. The difference in output form shows what type of data is
presented as a result.

To evaluate a symbolic number numerically, use the double command:
double(a)

ans =
1.4142

You also can create a rational fraction involving symbolic numbers:
sym(2) /sym(5)

ans =
2/5

or more efficiently:
sym(2/5)

ans =
2/5

MATLAB performs arithmetic on symbolic fractions differently than it does
on standard numeric fractions. By default, MATLAB stores all numeric values
as double-precision floating-point data. For example:

2/5 + 1/3

ans =
0.7333

If you add the same fractions as symbolic objects, MATLAB finds their
common denominator and combines them in the usual procedure for adding
rational numbers:

sym(2/5) + sym(1/3)

ans =
11/15



Symbolic Objects

To learn more about symbolic representation of rational and decimal fractions,
see “Estimating the Precision of Numeric to Symbolic Conversions” on page
2-117.

2-5
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Creating Symbolic Variables and Expressions

In this section...

“Creating Symbolic Variables” on page 2-6

“Creating Symbolic Expressions” on page 2-7

“Creating Symbolic Objects with Identical Names” on page 2-8
“Creating a Matrix of Symbolic Variables” on page 2-9
“Creating a Matrix of Symbolic Numbers” on page 2-10

“Finding Symbolic Variables in Expressions and Matrices” on page 2-10

Creating Symbolic Variables

The sym command creates symbolic variables and expressions. For example,
the commands

x
|

= sym('x");
sym('alpha');

Q
I}

create a symbolic variable x with the value x assigned to it in the MATLAB
workspace and a symbolic variable a with the value alpha assigned to it. An
alternate way to create a symbolic object is to use the syms command:

Syms X;
a = sym('alpha');

You can use sym or syms to create symbolic variables. The syms command:

® Does not use parentheses and quotation marks: syms x
¢ (Can create multiple objects with one call

® Serves best for creating individual single and multiple symbolic variables

The sym command:



Creating Symbolic Variables and Expressions

® Requires parentheses and quotation marks: x = sym('x"'). When creating
a symbolic number with 10 or fewer decimal digits, you can skip the
quotation marks: f = sym(5).

Creates one symbolic object with each call.

Serves best for creating symbolic numbers and symbolic expressions.

Serves best for creating symbolic objects in functions and scripts.

Note In Symbolic Math Toolbox, pi is a reserved word.

Creating Symbolic Expressions
Suppose you want to use a symbolic variable to represent the golden ratio

_]:+J§
P="

The command
rho = sym('(1 + sqrt(5))/2');

achieves this goal. Now you can perform various mathematical operations
on rho. For example,

f = rho*2 - rho - 1
returns

f =

(5~(1/2)/2 + 1/2)*2 - 5~(1/2)/2 - 3/2

Now suppose you want to study the quadratic function f = ax? + bx + ¢. One
approach is to enter the command

f = sym('a*x"2 + b*x + ¢');

which assigns the symbolic expression ax? + bx + ¢ to the variable f. However,
in this case, Symbolic Math Toolbox software does not create variables
corresponding to the terms of the expression: a, b, ¢, and x. To perform

2-7
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symbolic math operations on f, you need to create the variables explicitly. A
better alternative is to enter the commands

X O T 9
1]
)
<
3
—
X O T oD
—_— — — —

or simply
syms a b ¢ x
Then, enter

f = a*x"2 + b*x + c;

Note To create a symbolic expression that is a constant, you must use the sym
command. Do not use syms command to create a symbolic expression that is a
constant. For example, to create the expression whose value is 5, enter f =
sym(5). The command f = 5 does not define f as a symbolic expression.

Creating Symbolic Objects with Identical Names

If you set a variable equal to a symbolic expression, and then apply the syms
command to the variable, MATLAB software removes the previously defined
expression from the variable. For example,

syms a b;
f=a+b

returns

f:
a-+b

If later you enter

syms f;
f

then MATLAB removes the value a + b from the expression f:



Creating Symbolic Variables and Expressions

f
f
You can use the syms command to clear variables of definitions that you
previously assigned to them in your MATLAB session. However, syms does
not clear the following assumptions of the variables: complex, real, and
positive. These assumptions are stored separately from the symbolic object.

See “Deleting Symbolic Objects and Their Assumptions” on page 2-31 for
more information.

Creating a Matrix of Symbolic Variables

A circulant matrix has the property that each row is obtained from the
previous one by cyclically permuting the entries one step forward. You can
create the symbolic circulant matrix A whose elements are a, b, and ¢, using
the commands:

syms a b c;

A=[abec; cab; bc al
A =

[ a, b, c]

[ ¢, a, bl

[ b, c, al

Since the matrix A is circulant, the sum of elements over each row and each
column is the same. Find the sum of all the elements of the first row:

sum(A(1,:))

ans =
a+b+c

Check if the sum of the elements of the first row equals the sum of the
elements of the second column:

sum(A(1,:)) == sum(A(:,2))
The sums are equal:

ans =
1

2-9
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From this example, you can see that using symbolic objects is very similar to
using regular MATLAB numeric objects.

Creating a Matrix of Symbolic Numbers

A particularly effective use of sym is to convert a matrix from numeric to
symbolic form. The command

A = hilb(3)

generates the 3-by-3 Hilbert matrix:

A =
1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

By applying sym to A
A = sym(A)
you can obtain the precise symbolic form of the 3-by-3 Hilbert matrix:

A:

[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/8, 1/4, 1/5]

For more information on numeric to symbolic conversions see “Estimating the
Precision of Numeric to Symbolic Conversions” on page 2-17.

Finding Symbolic Variables in Expressions and
Matrices
To determine what symbolic variables are present in an expression, use

the symvar command. For example, given the symbolic expressions f and
g defined by

syms a b n t x z;
f = x™n;
g sin(a*t + b);



Creating Symbolic Variables and Expressions

you can find the symbolic variables in f by entering:

symvar (f)
ans =
[ n, X]

Similarly, you can find the symbolic variables in g by entering:

symvar(g)
ans =
[ a, b, t]

2-11
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Performing Symbolic Computations

In this section...

“Simplifying Symbolic Expressions” on page 2-12

“Substituting in Symbolic Expressions” on page 2-14

“Estimating the Precision of Numeric to Symbolic Conversions” on page 2-17
“Differentiating Symbolic Expressions” on page 2-19

“Integrating Symbolic Expressions” on page 2-21

“Solving Equations” on page 2-23

“Finding a Default Symbolic Variable” on page 2-25

“Creating Plots of Symbolic Functions” on page 2-25

Simplifying Symbolic Expressions

Symbolic Math Toolbox provides a set of simplification functions allowing you
to manipulate an output of a symbolic expression. For example, the following
polynomial of the golden ratio rho

rho = sym('(1 + sqrt(5))/2');

f = rho*2 - rho - 1

returns

f =
(57(1/2)/2 + 1/2)"2 - 57(1/2)/2 - 3/2

You can simplify this answer by entering

simplify(f)

and get a very short answer:

ans =
0

2-12
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Symbolic simplification is not always so straightforward. There is no universal
simplification function, because the meaning of a simplest representation of
a symbolic expression cannot be defined clearly. Different problems require
different forms of the same mathematical expression. Knowing what form

1s more effective for solving your particular problem, you can choose the
appropriate simplification function.

For example, to show the order of a polynomial or symbolically differentiate
or integrate a polynomial, use the standard polynomial form with all the
parenthesis multiplied out and all the similar terms summed up. To rewrite a
polynomial in the standard form, use the expand function:

Syms X;
f=(x "2- 1)*(x"4 + x*"3 + x*2 + x + 1)*(x*"4 - x*3 + x*2 - x + 1);
expand(f)

ans =
x*10 - 1

The factor simplification function shows the polynomial roots. If a
polynomial cannot be factored over the rational numbers, the output of the
factor function is the standard polynomial form. For example, to factor the
third-order polynomial, enter:

Syms X;
g = Xx"3 + 6*x"2 + 11*x + 6;
factor(g)

ans =
(x + 3)*(x + 2)*(x + 1)

The nested (Horner) representation of a polynomial is the most efficient for
numerical evaluations:

syms x;

h = x"5 + x"4 + x"3 + x"2 + X;
horner(h)

ans =
X*(X*(X*(x*(x + 1) + 1) + 1) + 1)

2-13
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For a list of Symbolic Math Toolbox simplification functions, see
“Simplifications” on page 3-42.

Substituting in Symbolic Expressions

subs Command

You can substitute a numeric value for a symbolic variable or replace one
symbolic variable with another using the subs command. For example, to
substitute the value x = 2 in the symbolic expression

syms X;
f = 2*x"2 - 3*x + 1;

enter the command
subs(f, 2)

ans =
3

Substituting in Multivariate Expressions

When your expression contains more than one variable, you can specify
the variable for which you want to make the substitution. For example, to
substitute the value x = 3 in the symbolic expression

syms X Vy;
f = x*2*y + 5*x*sqrt(y);

enter the command
subs(f, x, 3)
ans =

9*y + 15*y~(1/2)

Substituting One Symbolic Variable for Another

You also can substitute one symbolic variable for another symbolic variable.
For example to replace the variable y with the variable x, enter

2-14
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subs(f, y, x)

ans =
X*3 + 5*x"(3/2)

Substituting a Matrix into a Polynomial

You can also substitute a matrix into a symbolic polynomial with numeric
coefficients. There are two ways to substitute a matrix into a polynomial:
element by element and according to matrix multiplication rules.

Element-by-Element Substitution. To substitute a matrix at each element,
use the subs command:

A=1[123;45 6];
syms x; f = x*3 - 15*x"2 - 24*x + 350;
subs(f,A)

ans =
312 250 170
78 -20 -118

You can do element-by-element substitution for rectangular or square
matrices.

Substitution in a Matrix Sense. If you want to substitute a matrix into
a polynomial using standard matrix multiplication rules, a matrix must be

square. For example, you can substitute the magic square A into a polynomial
f:

1 Create the polynomial:

syms Xx;
f = x*3 - 15*x"2 - 24*x + 350;

2 Create the magic square matrix:

A = magic(3)

A =
8 1 6
3 5 7

2-15
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4 9 2

3 Get a row vector containing the numeric coefficients of the polynomial f:

b sym2poly(f)

b:
1 -15 -24 350

4 Substitute the magic square matrix A into the polynomial f. Matrix A
replaces all occurrences of x in the polynomial. The constant times the
identity matrix eye (3) replaces the constant term of f:

A*3 - 15*A"2 - 24*A + 350*eye(3)

ans =
-10 0 0
0 -10 0
0 0 -10

The polyvalm command provides an easy way to obtain the same result:

polyvalm(sym2poly(f),A)

ans =
-10 0 0
0 -10 0
0 0 -10

Substituting the Elements of a Symbolic Matrix

To substitute a set of elements in a symbolic matrix, also use the subs
command. Suppose you want to replace some of the elements of a symbolic
circulant matrix A

syms a b c;
A=[abc; cab; bc al

A =

[ a, b, c]
[ c, a, b]
[ b, c, a]
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To replace the (2, 1) element of A with beta and the variable b throughout
the matrix with variable alpha, enter

alpha = sym('alpha');
beta = sym('beta');
A(2,1) = beta;

A = subs(A,b,alpha)

The result is the matrix:

A =

[ a, alpha, c]
[ beta, a, alpha]
[ alpha, c, a]

For more information on the subs command see “Substitutions” on page 3-53.

Estimating the Precision of Numeric to Symbolic
Conversions

The sym command converts a numeric scalar or matrix to symbolic form. By
default, the sym command returns a rational approximation of a numeric
expression. For example, you can convert the standard double-precision
variable into a symbolic object:

t =0.1;
sym(t)

ans =
1/10

The technique for converting floating-point numbers is specified by the
optional second argument, which can be 'f', 'r', 'e' or 'd'. The default
option is 'r' that stands for rational approximation“Converting to Rational
Symbolic Form” on page 2-18.

Converting to Floating-Point Symbolic Form

The 'f' option to sym converts a double-precision floating-point number to a
sum of two binary numbers. All values are represented as rational numbers
N*2~e, where e and N are integers, and N is nonnegative. For example,

2-17
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sym(t, 'f')
returns the symbolic floating-point representation:
ans =

3602879701896397/36028797018963968

Converting to Rational Symbolic Form
If you call sym command with the 'r' option

sym(t, 'r')
you get the results in the rational form:

ans =
1/10

This is the default setting for the sym command. If you call this command
without any option, you get the result in the same rational form:

sym(t)

ans =
1/10

Converting to Rational Symbolic Form with Machine Precision

If you call the sym command with the option 'e', it returns the rational form
of t plus the difference between the theoretical rational expression for t and
its actual (machine) floating-point value in terms of eps (the floating-point
relative accuracy):

sym(t, 'e')
ans =

eps/40 + 1/10

Converting to Decimal Symbolic Form

If you call the sym command with the option 'd', it returns the decimal
expansion of t up to the number of significant digits:
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sym(t, 'd')

ans =
0.10000000000000000555111512312578

By default, the sym(t, 'd') command returns a number with 32 significant
digits. To change the number of significant digits, use the digits command:

digits(7);
sym(t, 'd')
ans =

0.1

Differentiating Symbolic Expressions
With the Symbolic Math Toolbox software, you can find

® Derivatives of single-variable expressions
¢ Partial derivatives

e Second and higher order derivatives

® Mixed derivatives

For in-depth information on taking symbolic derivatives see “Differentiation”
on page 3-2.

Expressions with One Variable

To differentiate a symbolic expression, use the diff command. The following
example illustrates how to take a first derivative of a symbolic expression:

syms X;

f = sin(x)"2;
diff (f)

ans =
2*C0Ss(X)*sin(x)
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Partial Derivatives

For multivariable expressions, you can specify the differentiation variable.
If you do not specify any variable, MATLAB chooses a default variable by
the proximity to the letter x:

syms X y;
f = sin(x)"2 + cos(y)"2;
diff(f)

ans =
2*cos(x)*sin(x)

For the complete set of rules MATLAB applies for choosing a default variable,
see “Finding a Default Symbolic Variable” on page 2-25.

To differentiate the symbolic expression f with respect to a variable y, enter:

syms X y;
f = sin(x)"2 + cos(y)"2;
diff(f, y)

ans =
(-2)*cos(y)*sin(y)

Second Partial and Mixed Derivatives

To take a second derivative of the symbolic expression f with respect to a
variable y, enter:

syms X y;
f = sin(x)"2 + cos(y)"2;
diff(f, y, 2)

ans =
2*sin(y)"2 - 2*cos(y)"2

You get the same result by taking derivative twice: diff (diff(f, y)). To
take mixed derivatives, use two differentiation commands. For example:

syms X y;
f = sin(x)"2 + cos(y)"2;
diff (diff(f, y), x)
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ans =
0

Integrating Symbolic Expressions
You can perform symbolic integration including:

¢ Indefinite and definite integration
¢ Integration of multivariable expressions

For in-depth information on the int command including integration with real
and complex parameters, see “Integration” on page 3-12.

Indefinite Integrals of One-Variable Expressions

Suppose you want to integrate a symbolic expression. The first step is to
create the symbolic expression:

syms Xx;
f = sin(x)"2;

To find the indefinite integral, enter

int(f)

ans =
x/2 - sin(2*x)/4

Indefinite Integrals of Multivariable Expressions

If the expression depends on multiple symbolic variables, you can designate a
variable of integration. If you do not specify any variable, MATLAB chooses a
default variable by the proximity to the letter x:

sSyms X y n;
f =x*n + y™n;
int(f)

ans =
xX*y*n + (x*x*n)/(n + 1)
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For the complete set of rules MATLAB applies for choosing a default variable,
see “Finding a Default Symbolic Variable” on page 2-25.

You also can integrate the expression f = x*n + y~n with respect toy

syms X y n;
f =x*n + y*n;
int(f, vy)

ans =
x*nxy + (y*y*n)/(n + 1)

If the integration variable is n, enter

syms X y n;
f = x"n + y"n;
int(f, n)

ans =
x*n/log(x) + y~n/log(y)

Definite Integrals

To find a definite integral, pass the limits of integration as the final two
arguments of the int function:

syms x y nj;
f =x"n+ y*n;
int(f, 1, 10)

ans =
piecewise([n = -1, log(10) + 9/yl,...
[n <> -1, (10*10"n - 1)/(n + 1) + 9*y*n])

If MATLAB Cannot Find a Closed Form of an Integral

If the int function cannot compute an integral, MATLAB issues a warning
and returns an unresolved integral:

syms X y n;
f = exp(x)*(1/n) + exp(y)~(1/n);
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int(f, n, 1, 10)
Warning: Explicit integral could not be found.

ans =
int(exp(x)*~(1/n) + exp(y)*(1/n), n = 1..10)

Solving Equations
You can solve different types of symbolic equations including:

® Algebraic equations with one symbolic variable
® Algebraic equations with several symbolic variables
® Systems of algebraic equations

For in-depth information on solving symbolic equations including differential
equations, see “Solving Equations” on page 3-93.

Algebraic Equations with One Symbolic Variable

You can find the values of variable x for which the following expression
is equal to zero:

syms Xx;
solve(x"3 - 6*x"2 + 11*x - 6)

By default, the solve command assumes that the right-side of the equation is
equal to zero. If you want to solve an equation with a nonzero right part, use
quotation marks around the equation:

sSyms Xx;
solve('x"3 - 6*x"2 + 11*x - 5 =1")

ans =

1
2
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Algebraic Equations with Several Symbolic Variables

If an equation contains several symbolic variables, you can designate a
variable for which this equation should be solved. For example, you can solve
the multivariable equation:

syms X y;
f = 6*XA2 _ 6*XA2*y + X*yAz - X*y + yA3 _ y/\2;

with respect to a symbolic variable y:
solve(f, vy)

ans

2*X
-3*Xx

If you do not specify any variable, you get the solution of an equation for the
alphabetically closest to x variable. For the complete set of rules MATLAB
applies for choosing a default variable see “Finding a Default Symbolic
Variable” on page 2-25.

Systems of Algebraic Equations
You also can solve systems of equations. For example:

syms X y z;
[X, ¥y, z] = solve('z = 4*x', 'x =y', 'z = x"2 + y"2'")
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8

Finding a Default Symbolic Variable

When performing substitution, differentiation, or integration, if you do not
specify a variable to use, MATLAB uses a default variable. The default
variable is basically the one closest alphabetically to x. To find which variable
is chosen as a default variable, use the symvar(expression, 1) command.
For example:

syms s t;
g=s+t;
symvar(g, 1)

ans =
t

syms sx tx;
g = sx + tx;
symvar(g, 1)

ans =
tx

For more information on choosing the default symbolic variable, see the
symvar command.

Creating Plots of Symbolic Functions

You can create different types of graphs including:

Plots of explicit functions

Plots of implicit functions

3-D parametric plots

e Surface plots

See “Pedagogical and Graphical Applications” on page 5-6 for in-depth
coverage of Symbolic Math Toolbox graphics and visualization tools.
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Explicit Function Plot
The simplest way to create a plot is to use the ezplot command:

Syms X;
ezplot(x®3 - 6*x"2 + 11*x - 6);
hold on;

The hold on command retains the existing plot allowing you to add new
elements and change the appearance of the plot. For example, now you can
change the names of the axes and add a new title and grid lines. When you
finish working with the current plot, enter the hold off command:

xlabel('x axis');

ylabel('no name axis');

title('Explicit function: x"3 - 6*x"2 + 11*x - 6');
grid on;

hold off

Explicit function: KB 4+ 117 - B

100 F*

-0

200

no name axis

300}
-400 1

500 b
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Implicit Function Plot

You can plot implicitly defined functions. For example, create a plot for the
following implicit function over the domain -1 <x < I:

Syms X Y;
f = (x"2 +y*2)"4 - (x"2 - y*2)"2;

ezplot(f, [-1 1]1);

hold on;

xlabel('x axis');

ylabel('y axis');

title('Implicit function: f = (x"2 + y*2)"4 - (x"2 - y"2)"2');
grid on;

hold off

Implicit function: = (2 + 43 - (12 - 2

y axis
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3-D Plot

3-D graphics is also available in Symbolic Math Toolbox . To create a 3-D plot,
use the ezplot3 command. For example:

syms t;
ezplot3(t~"2*sin(10*t), t~2*cos(10*t), t);

¥=1 sin(101), y =t cos(101), z =t
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Surface Plot

If you want to create a surface plot, use the ezsurf command. For example, to

plot a paraboloid z = x% + y2, enter:

syms X y;

ezsurf(x"2 + y"2);

hold on;

zlabel('z');

title('z = x*2 + y*2');
hold off
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Assumptions for Symbolic Objects

2-30

In this section...

“Default Assumption” on page 2-30
“Setting Assumptions for Symbolic Variables” on page 2-30

“Deleting Symbolic Objects and Their Assumptions” on page 2-31

Default Assumption

In Symbolic Math Toolbox, symbolic variables are single complex variables by
default. For example, if you declare z as a symbolic variable:

syms z

MATLAB assumes z is a complex variable. You can always check if a symbolic
variable is assumed to be complex or real by entering conj command. If

conj(x) == X returns 1, x is a real variable:
z == conj(z)
ans =
0

Setting Assumptions for Symbolic Variables

The sym and syms commands allow you to set up assumptions for symbolic
variables. For example, create the real symbolic variables x and y and the
positive symbolic variable z:

X = sym('x', 'real');
y = sym('y', 'real');
z = sym('z', 'positive');

or more efficiently

syms x y real;
syms z positive;

There are two assumptions you can assign to a symbolic object within the sym
command: real and positive. Together with the default complex property of a
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symbolic variable, it gives you three choices for an assumption for a symbolic
variable: complex, real, and positive.

Deleting Symbolic Objects and Their Assumptions

When you declare x to be real with the command

syms x real

you create a symbolic object x and the assumption that the object is real.
Symbolic objects and their assumptions are stored separately. When you
delete a symbolic object from the MATLAB workspace

clear x

the assumption that x is real stays in symbolic engine. If you declare a new
symbolic variable x later, it inherits the assumption that x is real instead of
getting a default assumption. If later you solve an equation and simplify an
expression with the symbolic variable x, you could get incomplete results. For
example, the assumption that x is real causes the polynomial x?+1 to have
no roots:

syms X real;
clear x;
Syms X;
solve(x"2+1)

Warning: Explicit solution could not be found.
> In solve at 81

ans =
[ empty sym ]

The complex roots of this polynomial disappear because the symbolic variable
x still has the assumption that x is real stored in the symbolic engine. To
clear the assumption, enter

syms x clear
After you clear the assumption, the symbolic object stays in the MATLAB

workspace. If you want to remove both the symbolic object and its assumption,
use two subsequent commands:
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1 To clear the assumption, enter
syms x clear

2 To delete the symbolic object, enter
clear x

For more information on clearing symbolic variables, see “Clearing
Assumptions and Resetting the Symbolic Engine” on page 4-31.
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Toolbox Software

This section explains how to use Symbolic Math Toolbox software to perform
many common mathematical operations. The section covers the following

topics:

“Calculus” on page 3-2

“Simplifications and Substitutions” on page 3-42
“Variable-Precision Arithmetic” on page 3-60

“Linear Algebra” on page 3-66

“Solving Equations” on page 3-93

“Integral Transforms and Z-Transforms” on page 3-102
“Special Functions of Applied Mathematics” on page 3-119

“Generating Code from Symbolic Expressions” on page 3-128
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Calculus

In this section...

“Differentiation” on page 3-2
“Limits” on page 3-8

“Integration” on page 3-12
“Symbolic Summation” on page 3-19
“Taylor Series” on page 3-20
“Calculus Example” on page 3-22

“Extended Calculus Example” on page 3-30

Differentiation

To 1llustrate how to take derivatives using Symbolic Math Toolbox software,

first create a symbolic expression:

syms x
f = sin(5*x)

The command
diff(f)
differentiates f with respect to x:

ans =
5*cos(5*x)

As another example, let
g = exp(x)*cos(x)
where exp(x) denotes e*, and differentiate g:

diff(g)
ans =
exp(x)*cos(x) - exp(x)*sin(x)
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To take the second derivative of g, enter

diff(g,2)
ans =
-2*exp(x)*sin(x)

You can get the same result by taking the derivative twice:

diff(diff(g))
ans =
-2*exp(x)*sin(x)

In this example, MATLAB software automatically simplifies the answer.
However, in some cases, MATLAB might not simply an answer, in which
case you can use the simplify command. For an example of this, see “More
Examples” on page 3-5.

Note that to take the derivative of a constant, you must first define the
constant as a symbolic expression. For example, entering

c =sym('5");
diff(c)

returns

ans =
0

If you just enter
diff(5)
MATLAB returns

ans =

[1

because 5 is not a symbolic expression.

Derivatives of Expressions with Several Variables

To differentiate an expression that contains more than one symbolic variable,
you must specify the variable that you want to differentiate with respect to.
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The diff command then calculates the partial derivative of the expression
with respect to that variable. For example, given the symbolic expression

syms s t
f = sin(s*t)

the command

diff (f,t)

calculates the partial derivative df /ot . The result is

ans =
s*cos(s*t)

To differentiate f with respect to the variable s, enter
diff(f,s)
which returns:

ans =
t*cos(s*t)

If you do not specify a variable to differentiate with respect to, MATLAB
chooses a default variable. Basically, the default variable is the letter closest
to x in the alphabet. See the complete set of rules in “Finding a Default
Symbolic Variable” on page 2-25. In the preceding example, diff (f) takes
the derivative of f with respect to t because the letter t is closer to x in the
alphabet than the letter s is. To determine the default variable that MATLAB
differentiates with respect to, use the symvar command:

symvar(f, 1)

ans =
t

To calculate the second derivative of f with respect to t, enter
diff(f, t, 2)

which returns
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ans =
-s"2*sin(s*t)

Note that diff (f, 2) returns the same answer because t is the default
variable.

More Examples

To further illustrate the diff command, define a, b, x, n, t, and theta in
the MATLAB workspace by entering

syms a b x n t theta

The table below illustrates the results of entering diff (f).

f diff(f)
syms X n; diff(f)
f = x™n;
ans =

n*x*(n - 1)

syms a b t; diff(f)
f = sin(a*t + b);
ans =

a*cos(b + a*t)

syms theta; diff(f)
f = exp(i*theta);
ans =

exp(theta*i)*i

To differentiate the Bessel function of the first kind,besselj (nu,z), with
respect to z, type

syms nu z
b = besselj(nu,z);
db = diff(b)



3 Using Symbolic Math Toolbox™ Software

3-6

which returns

db =
(nu*besselj(nu, z))/z - besselj(nu + 1, z)

The diff function can also take a symbolic matrix as its input. In this case,
the differentiation is done element-by-element. Consider the example

syms a x
A = [cos(a*x),sin(a*x);-sin(a*x),cos(a*x)]

which returns

cos(a*x), sin(a*x)]

A =
[
[ -sin(a*x), cos(a*x)]

The command

diff (A)

returns

ans =
[ -a*sin(a*x), a*cos(a*x)]
[ -a*cos(a*x), -a*sin(a*x)]

You can also perform differentiation of a vector function with respect to a
vector argument. Consider the transformation from Euclidean (x, y, 2) to
spherical (r,A,p) coordinates as given by x =rcosAcos@, y =rcosising ,

and z=rsini. Note that 1 corresponds to elevation or latitude while ¢
denotes azimuth or longitude.
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(x,y,2)

>y

To calculate the Jacobian matrix, </, of this transformation, use the jacobian
function. The mathematical notation for </ is

_ d(x,y,2)
a(r,1,0)
For the purposes of toolbox syntax, use 1 for A and f for ¢ . The commands

syms r 1 f
X = r*cos(l)*cos(f); y = r*cos(l)*sin(f); z = r*sin(l);
J = jacobian([x; y; zl], [r 1 f])

return the Jacobian

J:

[ cos(f)*cos(l), -r*cos(f)*sin(l), -r*cos(l)*sin(f)]
[ cos(l)*sin(f), -r*sin(f)*sin(l), r*cos(f)*cos(l)]
[ sin(l), r*cos(l), 0]

and the command
detd = simple(det(J))

returns

detd =
-r~2*cos(1)



3 Using Symbolic Math Toolbox™ Software

The arguments of the jacobian function can be column or row vectors.
Moreover, since the determinant of the Jacobian is a rather complicated
trigonometric expression, you can use the simple command to make
trigonometric substitutions and reductions (simplifications). The section
“Simplifications and Substitutions” on page 3-42 discusses simplification in
more detail.

A table summarizing diff and jacobian follows.

Mathematical
Operator MATLAB Command
df diff(f) or diff (f, x)
dx
df diff (f, a)
da
dzf diff(f, b, 2)
db*
a(r,t) J = jacobian([r; t],[u; Vv])
d(u,v)
Limits

The fundamental idea in calculus is to make calculations on functions as
a variable “gets close to” or approaches a certain value. Recall that the
definition of the derivative is given by a limit

, . flx+h)—f(x)
= 1 _—
) 10 h ’

provided this limit exists. Symbolic Math Toolbox software enables you to
calculate the limits of functions directly. The commands

syms h n x
limit((cos(x+h) - cos(x))/h, h, 0)
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which return

ans =
-sin(x)

and
limit((1 + x/n)*n, n, inf)
which returns

ans =
exp(x)

illustrate two of the most important limits in mathematics: the derivative (in
this case of cos(x)) and the exponential function.

One-Sided Limits

You can also calculate one-sided limits with Symbolic Math Toolbox software.
For example, you can calculate the limit of x/| x|, whose graph is shown in the
following figure, as x approaches 0 from the left or from the right.
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x/abs(x)
1 L
0.5f
O L
-0.5}
-1
-1 -0.5 0 0.5

To calculate the limit as x approaches 0 from the left,

lim —,
x—0- |l

enter

syms X;
limit(x/abs(x), x, 0, 'left')

This returns

ans =
-1

To calculate the limit as x approaches 0 from the right,

lim ==
20 [l

1,

3-10
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enter

syms X;
limit(x/abs(x), x, 0, 'right')

This returns

ans =
1

Since the limit from the left does not equal the limit from the right, the two-
sided limit does not exist. In the case of undefined limits, MATLAB returns
NaN (not a number). For example,

syms Xx;
limit(x/abs(x), x, 0)

returns

ans =
NaN

Observe that the default case, 1imit (f) is the same as 1imit(f,x,0).
Explore the options for the 1imit command in this table, where f is a function
of the symbolic object x.

Mathematical
Operation MATLAB Command
lim f(x) limit (f)
x—0
lim f(x) limit(f, x, a) or
xXx—a
limit(f, a)
lim f(x) limit(f, x, a, 'left')
Xx—a—
lim f(x) limit(f, x, a, 'right')
x—>a+
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Integration

If f is a symbolic expression, then

int(f)

attempts to find another symbolic expression, F, so that diff (F) = f. That
is, int (f) returns the indefinite integral or antiderivative of f (provided one
exists in closed form). Similar to differentiation,

int(f,v)

uses the symbolic object v as the variable of integration, rather than the
variable determined by symvar. See how int works by looking at this table.

Mathematical Operation | MATLAB Command

10g(x) ifn=-1 int(x*n) or int(x"n,x)

n . _
J.x dx =4+l

otherwise.
n+1
/2 int(sin(2*x), 0, pi/2) or
jsin@x)dx:l int(sin(2*x), x, 0, pi/2)
0
g = cos(at + b) g = cos(a*t + b) int(g) or int(g, t)

J.g(t)dt —sin(at +b)/ a

JJl(z)dzz_JO(z) Zir;t(t;t)asselj (1, z)) or int(besselj (1,

In contrast to differentiation, symbolic integration is a more complicated task.
A number of difficulties can arise in computing the integral:

¢ The antiderivative, F, may not exist in closed form.

¢ The antiderivative may define an unfamiliar function.

¢ The antiderivative may exist, but the software can’t find it.
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® The software could find the antiderivative on a larger computer, but runs

Nevertheless, in many cases, MATLAB can perform symbolic integration

out of time or memory on the available machine.

successfully. For example, create the symbolic variables

The following table illustrates integration of expressions containing those

syms a b theta x y nu z

variables.
f int(f)
syms X n; int(f)
f = x™n;
ans =
piecewise([n = -1, log(x)], [n <> -1,
x*(n + 1)/(n + 1)])
syms y; int(f)
f =y (-1);
ans =
log(y)
syms X n; int(f)
f = n"*x;
ans =
n*x/log(n)
syms a b int(f)
theta;
f = ans =

sin(a*thetatb);

-cos(b + a*theta)/a
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f ink(f)
syms u; int(f)
f=1/(1+u"2);
ans =
atan(u)
sSyms X; int(f)
f = exp(-x"2);
ans =

(pi~(1/2)*erf(x))/2

In the last example, exp (-x"2), there 1s no formula for the integral involving
standard calculus expressions, such as trigonometric and exponential
functions. In this case, MATLAB returns an answer in terms of the error
function erf.

If MATLAB is unable to find an answer to the integral of a function f, it
just returns int(f).

Definite integration is also possible.

Definite Integral Command

int(f, a, b)

j: f(x)dx

int(f, v, a, b)

j: f)dv

Here are some additional examples.
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f a, b int(f, a, b)
Syms X; a = int(f, a, b)
f = x°7; 0;

b = ans =
1; 1/8
Syms X; a = int(f, a, b)
f = 1/x; 1;
b = ans =
2; log(2)
Syms X; a = int(f, a, b)
f = 0;
log(x)*sqrt(x); b = ans =
1; -4/9
Syms X; a = int(f, a, b)
f = 0;
exp(-x"2); b = ans =
inf; pi~(1/2)/2
syms z; a = int(f, a, b)
f = 0;
besselj(1,z)"2] b = ans =
135 hypergeom([3/2, 3/2], [2,
5/2, 3], -1)/12

For the Bessel function (besselj) example, it is possible to compute a
numerical approximation to the value of the integral, using the double
function. The commands

syms z
a = int(besselj(1,z)"2,0,1)

return

3-15
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a:
hypergeom([3/2, 3/2], [2, 5/2, 3], -1)/12

and the command

a = double(a)

returns

a =
0.0717

Integration with Real Parameters

One of the subtleties involved in symbolic integration is the “value” of various
parameters. For example, if a is any positive real number, the expression

2
—ax

is the positive, bell shaped curve that tends to 0 as x tends to +. You can
create an example of this curve, for a = 1/2, using the following commands:

syms X
a = sym(1/2);

f = exp(-a*x"2);
ezplot(f)
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However, if you try to calculate the integral

(o=}
2
Ieaxdx

—oo

without assigning a value to a, MATLAB assumes that a represents a complex
number, and therefore returns a piecewise answer that depends on the
argument of a. If you are only interested in the case when a is a positive real
number, you can calculate the integral as follows:

syms a positive;

The argument positive in the syms command restricts a to have positive
values. Now you can calculate the preceding integral using the commands

syms Xx;
f = exp(-a*x"2);
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int(f, x, -inf, inf)

This returns
ans =

pi~(1/2)/a~(1/2)

Integration with Complex Parameters
To calculate the integral

o +x

for complex values of a, enter

syms a x clear
f =1/(a"2 + x*2);
F = int(f, x, -inf, inf)

syms is used with the clear option to clear the real property that was
assigned to a in the preceding example — see “Deleting Symbolic Objects
and Their Assumptions” on page 2-31.

The preceding commands produce the complex output
F =
(pi*signIm(i/a))/a

The function signIm is defined as:

1 if Im(2)>0, or Im(z)=0andz<0
signlm(z) =40 if z=0
-1 otherwise.



Calculus

signim =0

signim = -1 signlm = -1

To evaluate Fata = 1 + i, enter

g = subs(F, 1 + 1)
g =

pi/(2*i)~(1/2)
double(g)

ans =

1.5708 - 1.57081

Symbolic Summation

You can compute symbolic summations, when they exist, by using the symsum
command. For example, the p-series

sums to 72 /6 , while the geometric series

1+x+x2+...

sums to 1/(1 — x), provided |x| <1. These summations are demonstrated below:

syms x k
s1 = symsum(1/k"2, 1, inf)
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s2 = symsum(x“k, k, 0, inf)

s1 =
pi*2/6

s2 =
piecewise([1 <= x, Inf], [abs(x) < 1, -1/(x - 1)])

Taylor Series
The statements
syms X

f =1/(5 + 4*cos(x));
T = taylor(f, 8)

return

T =
(49*x~6) /131220 + (5*x"4)/1458 + (2*x"2)/81 + 1/9

which is all the terms up to, but not including, order eight in the Taylor series

for f(x):

Z (x f(n) (a)

Technically, T is a Maclaurin series, since its base pointisa = 0.
The command

pretty(T)

prints T in a format resembling typeset mathematics:
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6 4 2
49 X 5 X 2 X 1
...... B T

131220 1458 81 9

These commands

syms X
g exp(x*sin(x))
t taylor(g, 12, 2);

generate the first 12 nonzero terms of the Taylor series for g about x = 2.

t 1s a large expression; enter
size(char(t))

ans =
1 99791

to find that t has more than 100,000 characters in its printed form. In order
to proceed with using t, first simplify its presentation:

t = simplify(t);
size(char(t))

ans =
1 12137

To simplify t even further, use the simple function:

t = simple(t);
size(char(t))

ans =
1 6988

Next, plot these functions together to see how well this Taylor approximation
compares to the actual function g:
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xd = 1:0.05:3; yd = subs(g,x,xd);

ezplot(t, [1, 3]); hold on;

plot(xd, yd, 'r-.")

title('Taylor approximation vs. actual function');
legend('Taylor', 'Function')

Taylor approximation vs. actual function
T T T T T T

T
— Taylor
— - Function

Special thanks to Professor Gunnar Béackstrem of UMEA in Sweden for this
example.

Calculus Example

This section describes how to analyze a simple function to find its asymptotes,
maximum, minimum, and inflection point. The section covers the following
topics:
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® “Defining the Function” on page 3-23
* “Finding the Asymptotes” on page 3-24
¢ “Finding the Maximum and Minimum” on page 3-26

* “Finding the Inflection Point” on page 3-28

Defining the Function
The function in this example is

To create the function, enter the following commands:
syms X
num = 3*X"2 + 6*X -1;
denom = x"2 + x - 3;
f = num/denom

This returns

f
(3*x"2 + 6*x - 1)/(x"2 + x - 3)

You can plot the graph of f by entering

ezplot(f)

This displays the following plot.
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(3 X246 x-1)/(x>+x-3)

Finding the Asymptotes
To find the horizontal asymptote of the graph of f, take the limit of f as x
approaches positive infinity:

limit(f, inf)

ans =
3

The limit as x approaches negative infinity is also 3. This tells you that the
line y = 3 is a horizontal asymptote to the graph.

To find the vertical asymptotes of f, set the denominator equal to 0 and solve
by entering the following command:

roots = solve(denom)

This returns to solutions to x2 +x—-8=0:

roots =
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13~ (1/2)/2 - 1/2
- 13~ (1/2)/2 - 1/2

This tells you that vertical asymptotes are the lines

x_—1+\/ﬁ
2 ’

and
Lo "1-V13
=—

You can plot the horizontal and vertical asymptotes with the following
commands:

ezplot (f)

hold on % Keep the graph of f in the figure
% Plot horizontal asymptote

plot([-2*pi 2*pi], [3 3],'g")

% Plot vertical asymptotes
plot(double(roots(1))*[1 1], [-5 10],'r")
plot(double(roots(2))*[1 1], [-5 10],'r")
title('Horizontal and Vertical Asymptotes')
hold off

Note that roots must be converted to double to use the plot command

The preceding commands display the following figure.
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Horizontal and Vertical Asymptotes

gl
6k
al
-
ol |
ol |
2t |
4}, ‘ ‘ ‘ ‘ ‘ g
-6 -4 -2 0 2 4 6

To recover the graph of f without the asymptotes, enter
ezplot (f)

Finding the Maximum and Minimum

You can see from the graph that f has a local maximum somewhere between
the points x = -2 and x = 0, and might have a local minimum between x =
—6 and x = —2. To find the x-coordinates of the maximum and minimum,
first take the derivative of f:

f1 = diff(f)

This returns

1=
(6*x + B)/(X"2 + x - 3) - ((2*x + 1)*(3*x*2 + 6*x - 1))/(x"2 + x - 3)"2

To simplify this expression, enter

f1 = simplify(f1)
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which returns

f1 =
S(3*x"2 + 16*x + 17)/(x"2 + x - 3)"2

You can display f1 in a more readable form by entering

pretty(f1)

which returns

3 x + 16 x + 17

Next, set the derivative equal to 0 and solve for the critical points:
crit_pts = solve(f1)

This returns
crit_pts =

13~(1/2)/3 - 8/3
- 137(1/2)/3 - 8/3

It is clear from the graph of f that it has a local minimum at

_-8-4/13

X1 3

and a local maximum at

_ -8+413

X9 3
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Note MATLAB does not always return the roots to an equation in the same
order.

You can plot the maximum and minimum of f with the following commands:

ezplot (f)

hold on

plot(double(crit_pts), double(subs(f,crit_pts)),'ro')
title('Maximum and Minimum of f')
text(-5.5,3.2,'Local minimum')

text(-2.5,2, 'Local maximum')

hold off

This displays the following figure.

Maximum and Minimum of f

T T T T T T T

Local minimum

2r Local maximum 1
or ]
-2t ]
-4, . ) ) ) ) e
-6 -4 -2 0 2 4 6

Finding the Inflection Point
To find the inflection point of f, set the second derivative equal to 0 and solve.

3-28



Calculus

f2 = diff(f1);
inflec_pt = solve(f2);
double(inflec_pt)

This returns

ans =
-5.2635
-1.3682 - 0.85111
-1.3682 + 0.85111

In this example, only the first entry is a real number, so this is the only

inflection point. (Note that in other examples, the real solutions might not
be the first entries of the answer.) Since you are only interested in the real
solutions, you can discard the last two entries, which are complex numbers.

inflec_pt = inflec_pt(1)

To see the symbolic expression for the inflection point, enter
pretty(simplify(inflec_pt))

This returns

To plot the inflection point, enter

ezplot(f, [-9 6])
hold on

3-29



3 Using Symbolic Math Toolbox™ Software

3-30

plot(double(inflec_pt), double(subs(f,inflec_pt)),'ro')
title('Inflection Point of f')

text(-7,2, 'Inflection point')

hold off

The extra argument, [-9 6], in ezplot extends the range of x values in
the plot so that you see the inflection point more clearly, as shown in the
following figure.

Inflection Point of f

2F Inflection point B

Extended Calculus Example

This section presents an extended example that illustrates how to find the
maxima and minima of a function. The section covers the following topics:
e “Defining the Function” on page 3-31

* “Finding the Zeros of £3” on page 3-32

* “Finding the Maxima and Minima of f2” on page 3-36

® “Integrating” on page 3-37
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Defining the Function
The starting point for the example is the function

_ 1
5+4cos(x)

f(x)

You can create the function with the commands

syms X
f = 1/(5+4*cos(x))

which return

f:
1/(4*cos(x) + 5)

The example shows how to find the maximum and minimum of the second
derivative of f(x). To compute the second derivative, enter

f2 = diff(f, 2)

which returns

f2 =
(4*cos(x))/(4*cos(x) + 5)72 + (32*sin(x)"2)/(4*cos(x) + 5)"3

Equivalently, you can type f2 = diff(f, x, 2). The default scaling in
ezplot cuts off part of the graph of 2. You can set the axes limits manually
to see the entire function:

ezplot (f2)

axis([-2*pi 2*pi -5 2])
title('Graph of f2')
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Graph of f2
T

-2+ N

A+ 4

From the graph, it appears that the maximum value of f”(x) is 1 and the
minimum value is -4. As you will see, this is not quite true. To find the exact
values of the maximum and minimum, you only need to find the maximum

and minimum on the interval (—m, m]. This is true because f”(x) is periodic
with period 2m, so that the maxima and minima are simply repeated in each
translation of this interval by an integer multiple of 2. The next two sections
explain how to do find the maxima and minima.

Finding the Zeros of f3

77,

The maxima and minima of f”(x) occur at the zeros of f”’(x). The statements

f3 = diff(f2);
pretty(f3)

’77

compute f(x) and display it in a more readable form:
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384 sin(x) 4 sin(x) 96 cos(x) sin(x)

You can simplify this expression using the statements

f3 = simple(f3);
pretty(f3)

2
4 sin(x) (- 16 cos(x) + 80 cos(x) + 71)

(4 cos(x) + 5)

Now, to find the zeros of f”'(x), enter

zeros = solve(f3)

This returns a 5-by-1 symbolic matrix

zeros =
acos(5/2 - (3*197(1/2))/4)
acos((3*19~(1/2))/4 + 5/2)
0
-acos(5/2 - (3*19~(1/2))/4)
-acos((3*19~(1/2))/4 + 5/2)

177,

each of whose entries is a zero of f”’(x). The commands

format;

[)

% Default format of 5 digits
zerosd = double(zeros)

convert the zeros to double form:

3-33



3 Using Symbolic Math Toolbox™ Software

zerosd =
2.4483
0 + 2.43811
0
-2.4483
0 - 2.43811

So far, you have found three real zeros and two complex zeros. However, as
the following graph of f3 shows, these are not all its zeros:

ezplot (f3)

hold on;

plot(zerosd,0*zerosd, 'ro') % Plot zeros
plot([-2*pi,2*pi], [0,0],'g-."); % Plot x-axis
title('Graph of f3')

Graph of f3

The red circles in the graph correspond to zerosd (1), zerosd(3), and
zerosd(4). As you can see in the graph, there are also zeros at . The

’77

additional zeros occur because f”’(x) contains a factor of sin(x), which is
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zero at integer multiples of m. The function, solve(sin(x)), however, only
finds the zero at x = 0.

A complete list of the zeros of f”/(x) in the interval (—m, ] is

zerosd = [zerosd(1) zerosd(3) zerosd(4) pil;

’77,

You can display these zeros on the graph of f”'(x) with the following
commands:

ezplot (f3)

hold on;

plot(zerosd,0*zerosd, 'ro')

plot([-2*pi,2*pi], [0,0]1,'g-."); % Plot x-axis
title('Zeros of f3')

hold off;

Zeros of f3
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Finding the Maxima and Minima of 2

To find the maxima and minima of f”(x), calculate the value of f”(x) at

77

each of the zeros of f'(x). To do so, substitute zeros into f2 and display
the result below zeros:

[zerosd; subs(f2,zerosd)]

ans =
2.4483 0 -2.4483 3.1416
1.0051 0.0494 1.0051 -4.0000

This shows the following:

¢ f”(x) has an absolute maximum at x = +2.4483, whose value is 1.0051.
e [”(x) has an absolute minimum at x = zz, whose value is -4.
¢ f”(x) has a local minimum at x = 0, whose value is 0.0494.

You can display the maxima and minima with the following commands:

clf

ezplot(f2)

axis([-2*pi 2*pi -4.5 1.5])
ylabel('f2');

title('Maxima and Minima of f2')
hold on

plot(zerosd, subs(f2,zerosd), 'ro')
text (-4, 1.25, 'Absolute maximum')
text(-1,-0.25,'Local minimum')

text (.9, 1.25, 'Absolute maximum')
text(1.6, -4.25, 'Absolute minimum')
hold off;

This displays the following figure.
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Maxima and Minima of 2

Absolute maximum Absolute maximum
1r i
(o] 3
Local minimum
_1 L 4
N
_2 L -
_3 L -
_4 L -
Absolute minimum
-6 -4 -2 0 2 4 6

The preceding analysis shows that the actual range of f”(x) is [-4, 1.0051].

Integrating
Integrate f(x):

F = int(f)
The result
F =

(2*atan(tan(x/2)/3))/3
involves the arctangent function.
Note that F(x) is not an antiderivative of f(x) for all real numbers, since it 1s
discontinuous at odd multiples of 7, where tan (x) is singular. You can see the

gaps in F(x) in the following figure.

ezplot (F)
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(2 atantan(x/Z3/3/3

0&t .

To change F(x) into a true antiderivative of f(x) that is differentiable
everywhere, you can add a step function to F(x). The height of the steps is
the height of the gaps in the graph of F(x). You can determine the height of
the gaps by taking the limits of F(x) as x approaches 7 from the left and from
the right. The limit from the left is

limit(F, x, pi, 'left')

ans =
pi/3

On the other hand, the limit from the right is
limit(F, x, pi, 'right')

ans =
-pi/3

The height of the gap is the distance between the left-and right-hand limits,
which is 217/3 as shown in the following figure.
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/3

Gap of height 2n/3

-/ 3

2 4

You can create the step function using the round function, which rounds
numbers to the nearest integer, as follows:

J = sym(2*pi/3)*sym('round(x/(2*pi))"');

Each step has width 2, and the jump from one step to the next is 211/3, as
shown in the following figure, generated with

ezplot(J, [-2*pi 2*pi])
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(2 m round (/2 w03
21 =
1t 4
ar 4
At 4
2L 4
5 4 2 2 4 ©
X

Next, add the step function J(x) to F(x) with the following code:

F1 =F +J

F1 =
(2*atan(tan(x/2)/8))/3 + (2*pi*round(x/(2*pi)))/3

Adding the step function raises the section of the graph of F(x) on the interval
[z, 3m) up by 2m/3, lowers the section on the interval (-3, —iz] down by 2m/3,
and so on, as shown in the following figure.
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Moves down / / Moves up

2n/3

2r/3

When you plot the result by entering

ezplot(F1)

you see that this representation does have a continuous graph.

(2 atan(tan(x/2%3053 + (2 1 round(xA2 w73
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Simplifications and Substitutions

In this section...

“Simplifications” on page 3-42

“Substitutions” on page 3-53

Simplifications
Here are three different symbolic expressions.

syms X

f =x*3 - 6*x"2 + 11*x - 6;

g = (x - 1)*(x - 2)*(x - 3);
h -6 + (11 + (-6 + X)*X)*X;

Here are their prettyprinted forms, generated by

pretty(f);

pretty(9);
pretty(h)

3 2
X -6x +11 x -6

(x - 1) (x - 2) (x - 3)
X (X (x - 6) +11) - 6

These expressions are three different representations of the same
mathematical function, a cubic polynomial in x.

Each of the three forms is preferable to the others in different situations. The
first form, f, is the most commonly used representation of a polynomial. It

is simply a linear combination of the powers of x. The second form, g, is the
factored form. It displays the roots of the polynomial and is the most accurate
for numerical evaluation near the roots. But, if a polynomial does not have
such simple roots, its factored form may not be so convenient. The third form,
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h, is the Horner, or nested, representation. For numerical evaluation, it
involves the fewest arithmetic operations and is the most accurate for some
other ranges of x.

The symbolic simplification problem involves the verification that these three
expressions represent the same function. It also involves a less clearly defined
objective — which of these representations is “the simplest”?

This toolbox provides several functions that apply various algebraic and
trigonometric identities to transform one representation of a function into
another, possibly simpler, representation. These functions are collect,
expand, horner, factor, simplify, and simple.

collect

The statementcollect (f) views f as a polynomial in its symbolic variable,
say X, and collects all the coefficients with the same power of x. A second
argument can specify the variable in which to collect terms if there is more
than one candidate. Here are a few examples.

f collect(f)
syms Xx; collect(f)
f =
(x-1)*(x-2)*(x-3); ans =

X"3 - 6*x"2 + 11*x - 6

Syms X; collect(f)
f = x*(x*(x - 6) +
11) - 6; ans =

X"3 - 6*x"2 + 11*x - 6

syms x t; collect(f)
f = (1+x)*t + x*t;
ans =
(2*t)*x + t
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expand

The statement expand (f) distributes products over sums and applies other
identities involving functions of sums as shown in the examples below.

f expand(f)
syms a x y; expand(f)
f=ax(x +y);
ans =
a*x + a*y
syms Xx; expand (f)
f = (x - 1)*(x
- 2)*(x - 3); ans =
X*3 - 6*x"2 + 11*x - 6
syms Xx; expand(f)
f = x*(x*(x -
6) + 11) - 6; ans =
X*3 - 6*x"2 + 11*x - 6
syms a b; expand(f)
f = exp(a + b);
ans =
exp(a)*exp(b)
Syms X y; expand(f)
f = cos(x + vy);
ans =

cos(x)*cos(y) - sin(x)*sin(y)
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f expand(f)
syms Xx; expand(f)
f =
cos(3*acos(x)); ans =
3*x*(x*2 - 1) + x"3
syms Xx; expand(f)
f = 3*x*(x"2 -
1) + x°3; ans =
4*x*3 - 3*X
horner

The statement horner (f) transforms a symbolic polynomial f into its Horner,
or nested, representation as shown in the following examples.

f horner(f)
sSyms X; horner (f)
f = x"3 - 6*x"2
+ 11*x - 6; ans =
X*(x*(x - 6) + 11) - 6
sSyms X; horner (f)
f=1.1+ 2.2*%x
+ 3.3*XA2; ans =
X*((33*x)/10 + 11/5) + 11/10
factor

If f is a polynomial with rational coefficients, the statement

factor(f)

expresses T as a product of polynomials of lower degree with rational
coefficients. If f cannot be factored over the rational numbers, the result is
f itself. Here are several examples.
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f factor(f)
Syms X; factor(f)
f = x"3 - 6*x"2
+ 11*x - 6; ans =

(x - 3)*(x - 1)*(x - 2)

Syms X; factor(f)
f = x*"3 - 6*x"2
+ 11*x - 5; ans =

Xx*"3 - 6*x"2 + 11*x - 5

Syms X; factor(f)
f=x"6+ 1;
ans =

(x*2 + 1)*(x"4 - x*2 + 1)

Here is another example involving factor. It factors polynomials of the form
x“n + 1. This code

syms Xx;
n=(1:9)";
p=x."n+ 1;
f = factor(p);
[p, fl

returns a matrix with the polynomials in its first column and their factored
forms in its second.

ans =

[ X + 1, X + 1]
[ x*2 + 1, x*2 + 1]
[ x*3 + 1, (x + 1)*(x*2 - x + 1)]
[ x*4 + 1, X4 + 1]
[ x*5 + 1, (x + 1)*(x*4 - x*3 + x*2 - x + 1)]
[ x*6 + 1, (x*2 + 1)*(x"4 - x*2 + 1)]
[ x*7 + 1, (x + 1)*(x"6 - x*5 + x"4 - x*3 + x"2 - x + 1)]
[ x*8 + 1, X8 + 1]
[ x*9 + 1, (x + 1)*(x"2 - x + 1)*(x*6 - x*3 + 1)]
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As an aside at this point, factor can also factor symbolic objects containing
integers. This is an alternative to using the factor function in the MATLAB
specfun directory. For example, the following code segment

N = sym(1);
for k = 2:11
N(k) = 10*N(k-1)+1;
end
[N' factor(N')]

displays the factors of symbolic integers consisting of 1s:

ans =

[ 1, 1]
[ 11, 11]
[ 111, 3*37]
[ 1111, 11*101]
[ 11111, 41%271]
[ 111111,  3*7*11*13*37]
[ 1111111, 239*4649]
[ 11111111, 11*73*101*137]
[ 111111111, 3°2*37*333667]
[ 1111111111, 11*41%*271*9091]
[ 11111111111,  21649*513239]

simplify

The simplify function is a powerful, general purpose tool that applies a
number of algebraic identities involving sums, integral powers, square roots
and other fractional powers, as well as a number of functional identities
involving trig functions, exponential and log functions, Bessel functions,
hypergeometric functions, and the gamma function. Here are some examples.
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simplify(f)
syms X; simplify(f)
f = x*(x*(x - 6) +
1) - 6; ans =

(x - 1)*(x - 2)*(x - 3)

sSyms X; simplify(f)
f=(1-x"2)/(1 - x);

ans =

X + 1
syms a; simplify(f)
f = (1/a"3 + 6/a"2 +
12/a + 8)’\(1/3), ans =

((2*a + 1)~3/a"3)"(1/3)

syms X y; simplify(f)
f = exp(x) * exp(y);

ans =

exp(x +y)
sSyms X; simplify(f)
f = besselj(2, x) +
besselj (0, x); ans =

(2*besselj (1, x))/x

sSyms X; simplify(f)
f = gamma(x + 1) -
x*gamma(x) ; ans =

0
sSyms X; simplify(f)
f = cos(x)"2 + sin(x)"2;

ans =

1
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You can also use the syntax simplify(f, n) where n is a positive integer
that controls how many steps simplify takes. The default, when you don’t
provide an argument n, is 100 steps. For example,

syms X;
z = 3 - 1/sin(x)"2 - cot(x)"2

z
3 - 1/sin(x)"2 - cot(x)"2
simplify(z)

ans =
4 - 2/sin(x)"2

simplify(z, 200)

ans =
2 - 2*cot(x)"2

simple

The simple function has the unorthodox mathematical goal of finding a
simplification of an expression that has the fewest number of characters.

Of course, there is little mathematical justification for claiming that one
expression is “simpler” than another just because its ASCII representation is
shorter, but this often proves satisfactory in practice.

The simple function achieves its goal by independently applying simplify,
collect, factor, and other simplification functions to an expression and
keeping track of the lengths of the results. The simple function then returns
the shortest result.

The simple function has several forms, each returning different output. The
form simple(f) displays each trial simplification and the simplification
function that produced it in the MATLAB command window. The simple
function then returns the shortest result. For example, the command

syms Xx;
simple(cos(x)"2 + sin(x)"2)
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displays the following alternative simplifications in the MATLAB command
window along with the result:

simplify:
1

radsimp:

cos(x)"2 + sin(x)"2

simplify(100):
1

combine(sincos):
1

combine(sinhcosh):

cos(x)"2 + sin(x)"2

combine(1ln):

cos(x)"2 + sin(x)"2

factor:
cos(x)"2 + sin(x)"2

expand:

cos(x)"2 + sin(x)"2

combine:

cos(x)"2 + sin(x)"2

rewrite(exp):

((1/exp(x*1))/2 + exp(x*i)/2)"2 + (((1/exp(x*i))*i)/2 - (exp(x*i)*i)/2)"2

rewrite(sincos):

cos(x)"2 + sin(x)"2

rewrite(sinhcosh):

cosh(-x*i)*2 - sinh(-i*x)"2

rewrite(tan):
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(tan(x/2)"2 - 1)"2/(tan(x/2)"2 + 1)"2 + (4*tan(x/2)"2)/(tan(x/2)"2 + 1)"2

mwcos2sin:

1

collect(x):

cos(x)"2 + sin(x)"2

ans =

This form is useful when you want to check, for example, whether the shortest
form is indeed the simplest. If you are not interested in how simple achieves
its result, use the form f = simple(f). This form simply returns the shortest
expression found. For example, the statement

f = simple(cos(x)"2 + sin(x)"2)
returns

f -

1
If you want to know which simplification returned the shortest result, use the
multiple output form [f, how] = simple(f). This form returns the shortest

result in the first variable and the simplification method used to achieve the
result in the second variable. For example, the statement

[f, how] = simple(cos(x)"2 + sin(x)"2)
returns

f =

1

how =

simplify

The simple function sometimes improves on the result returned by simplify,
one of the simplifications that it tries. For example, when applied to the
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examples given for simplify, simple returns a simpler (or at least shorter)
result as shown:

f simplify(f) simple(f)
syms a positive; simplify(f) g =
f = (1/a”3 + 6/a~2 + simple(f)
12/a + 8)"(1/3); ans =
(8*a~3 + 12*a"2 + g =
6*a + 1)~(1/3)/a 1/a + 2
syms X; simplify(f) g =
f = cos(x) + i*sin(x); simple(f)
ans =
cos(x) + sin(x)*i g =
exp(x*i)

In some cases, it is advantageous to apply simple twice to obtain the effect of
two different simplification functions. For example:

sSyms X;
z = exp((cos(x)*2 - sin(x)"2)/(sin(x)*cos(x)))

z =

exp((cos(x)"2 - sin(x)"2)/(cos(x)*sin(x)))

z1 simple(z)

z1 =
exp(cot(x) - tan(x))

z2

simple(simple(z))

z2 =
exp(2/tan(2*x))

The simple function is particularly effective on expressions involving
trigonometric functions:
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f simple(f)

Syms X; f = simple(f)
f = cos(x)"2 +
sin(x)"2; f =

1
sSyms X; f = simple(f)
f = 2*cos(x) "2 -
sin(x)"2; f =

2 - 3*sin(x)"2
Syms X; f = simple(f)
f = cos(x)"2 -
sin(x)"2; f =

COS(2*X)
syms Xx; f = simple(f)
f = cos(x) +
i*sin(x); f =

exp(x*i)
sSyms X; f = simple(f)
f = cos(3*acos(x));

f =

4*x~3 - 3*X

Substitutions

There are two functions for symbolic substitution: subexpr and subs.

subexpr
These commands

syms a x

s = solve(x"3 + a*x + 1)
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solve the equation x*3 + a*x + 1 = 0 for the variable x:
s =
((a8/27 + 1/4)~(1/2) - 1/2)~(1/3) - a/(3*((a*8/27 + 1/4)~(1/2) - 1/2)*(1/3))

a/(6*((a"8/27 + 1/4)~(1/2) - 1/2)~(1/3)) - ((a"8/27 + 1/4)~(1/2) - 1/2)"(1/3)/2...
- (37(1/2)*(a/(3*((a"3/27 + 1/4)~(1/2) - 1/2)7(1/3))...
+ ((a"8/27 + 1/4)"(1/2) - 1/2)~(1/3))*i)/2

a/(6*((a"8/27 + 1/4)~(1/2) - 1/2)~(1/3)) - ((a"8/27 + 1/4)~(1/2) - 1/2)"(1/3)/2...
+ (37(1/2)*(a/(3*((a"3/27 + 1/4)~(1/2) - 1/2)7(1/3))...
+ ((a"8/27 + 1/4)"(1/2) - 1/2)~(1/3))*i)/2

This long expression has many repeated pieces, or subexpressions. The
subexpr function allows you to save these common subexpressions as
well as the symbolic object rewritten in terms of the subexpressions. The
subexpressions are saved in a column vector called sigma.

Continuing with the example
r = subexpr(s)
returns

sigma =

(a”8/27 + 1/4)~(1/2) - 1/2

sigma”(1/3) - a/(3*sigma”~(1/3))
a/(6*sigma~(1/3)) - sigma~(1/3)/2 - (3~(1/2)*(a/(3*sigma~(1/3)) + sigma”(1/3))*i)/2
a/(6*sigma~(1/3)) - sigma~(1/3)/2 + (3~(1/2)*(a/(3*sigma~(1/3)) + sigma”(1/3))*i)/2

Notice that subexpr creates the variable sigma in the MATLAB workspace.
You can verify this by typing whos, or the command

sigma
which returns

sigma =
(a~3/27 + 1/4)~(1/2) - 1/2
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subs

The following code finds the eigenvalues and eigenvectors of a circulant

matrix A:

syms a b ¢
A =[abc; bca; cabl;
[v,E] = eig(A)

[ (a*2 - a*b - a*c + b*2 -

- (a*2 - a*b - a*c + b2 -

[ - (a*2 - a*b - a*c + b2 -

(a*2 - a*b - a*c + b*2 -

E =

b*c

b*c

b*c

b*c

+.¢72)7(1/2)/(a
+.¢2)7(1/2)/(a

+.¢72)7(1/2)/(a
+¢2)7(1/2)/(a

1,

[-(a*2-a*b-a*ctb*2-b*c+c2)~(1/2),
0, (a*2-a*b-a*c+b*2-b*c+c*2)"~(1/2),

0,

c)

c)

c)

c)

(a

(a

(b

(b -

b)/(a - ¢c),...
b)/(a - ¢c),...
1]

c)/(a - ¢C)y...
c)/(a - ¢C)y...
1]
1]

0, 0]

0]

0, atb+c]

Note MATLAB might return the eigenvalues that appear on the diagonal of E
in a different order. In this case, the corresponding eigenvectors, which are

the columns of v, will also appear in a different order.

Suppose you want to replace the rather lengthy expression (a*2 - a*b -
a*c + b2 - b*c + ¢*2)"(1/2) throughout v and E. First, use subexpr:

E = subexpr(E,'S")
which returns

S =

(a”2 - a*b - a*c + b*2 - b*c + ¢*2)"(1/2)
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[ 'S! 07 O]
[ 0, S, 0]
[ 0, 0, a+ b+ c]

Next, substitute the symbol S into v with
v = simplify(subs(v, S, 'S'))

v
[ (S-a+b)/(a-¢c), -(S+a-Db)/(a-c), 1]
[ -(S+b-c)/(a-c), (S-b+c)/(a-c), 1]
[ 1, 15 1]

Now suppose you want to evaluate v at a = 10. Use the subs command:
subs(v, a, 10)
This replaces all occurrences of a in v with 10:

ans =

[ -(S+Db -10)/(c - 10), (S - b + 10)/(c - 10), 1]
[ (S+b-c)/(c - 10), -(S - Db +c)/(c - 10), 1]
[ 1; 1! 1]

Notice, however, that the symbolic expression that S represents is unaffected
by this substitution. That is, the symbol a in S is not replaced by 10. The subs
command is also a useful function for substituting in a variety of values for
several variables in a particular expression. For example, suppose that in
addition to substituting a = 10 in S, you also want to substitute the values
for 2 and 10 for b and c, respectively. The way to do this is to set values for a,
b, and ¢ in the workspace. Then subs evaluates its input using the existing
symbolic and double variables in the current workspace. In the example,

you first set

a=10; b =2; ¢ = 10;
subs(S)

ans =
8

To look at the contents of the workspace, type:
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whos
which gives

Name

< OTQ® O »mMm>
=]
7]

a, b, and ¢ are now variables of class double while A, E, S, and v remain

Size

3x3
3x3
1x1
1x1
1x1
1x1
1x1
3x3

symbolic expressions (class sym).

If you want to preserve a, b, and ¢ as symbolic variables, but still alter their
value within S, use this procedure.

syms a b ¢

subs(S, {a, b, c},

ans =
8

{10, 2,

Bytes

622
1144
184
8

8

8

8
1144

10})

Class

sym
sym
sym
double
double
double
double
sym

Attributes

Typing whos reveals that a, b, and ¢ remain 1-by-1 sym objects.

The subs command can be combined with double to evaluate a symbolic

expression numerically. Suppose you have the following expressions

syms t

M= (1 - t"2)*exp(-1/2*t"2);

P

(1 - t72)*sech(t);

and want to see how M and P differ graphically.

One approach is to type

ezplot (M);
hold on;
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ezplot(P);
hold off;

but this plot does not readily help you identify the curves.

(112 sech(t)
T

Instead, combine subs, double, and plot:

T =-6:0.05:6;

MT = double(subs(M, t, T));
PT = double(subs(P, t, T));
plot(T, MT, 'b', T, PT, 'r-.");

title(' ');
legend('M','P');
xlabel('t'); grid;

to produce a multicolored graph that indicates the difference between M and P.
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Finally the use of subs with strings greatly facilitates the solution of problems
involving the Fourier, Laplace, or z-transforms. See the section “Integral
Transforms and Z-Transforms” on page 3-102 for complete details.

3-59



3 Using Symbolic Math Toolbox™ Software
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Variable-Precision Arithmetic

In this section...

“Overview” on page 3-60

“Example: Using the Different Kinds of Arithmetic” on page 3-61

“Another Example Using Different Kinds of Arithmetic” on page 3-64

Overview
There are three different kinds of arithmetic operations in this toolbox:

Numeric MATLAB floating-point arithmetic
Rational MuPAD software exact symbolic arithmetic
VPA MuPAD software variable-precision arithmetic

For example, the MATLAB statements

format long
1/2 + 1/83

use numeric computation to produce

ans =
0.833333333333333

With Symbolic Math Toolbox software, the statement
sym(1/2) + 1/3
uses symbolic computation to yield

ans =
5/6

And, also with the toolbox, the statements

digits(25)
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vpa('1/2 + 1/3")

use variable-precision arithmetic to return

ans =
0.8333333333333333333333333

The floating-point operations used by numeric arithmetic are the fastest of the
three, and require the least computer memory, but the results are not exact.
The number of digits in the printed output of MATLAB double quantities

is controlled by the format statement, but the internal representation is
always the eight-byte floating-point representation provided by the particular
computer hardware.

In the computation of the numeric result above, there are actually three
roundoff errors, one in the division of 1 by 3, one in the addition of 1/2 to
the result of the division, and one in the binary to decimal conversion for
the printed output. On computers that use IEEE® floating-point standard
arithmetic, the resulting internal value is the binary expansion of 5/6,
truncated to 53 bits. This is approximately 16 decimal digits. But, in this
particular case, the printed output shows only 15 digits.

The symbolic operations used by rational arithmetic are potentially the
most expensive of the three, in terms of both computer time and memory.
The results are exact, as long as enough time and memory are available to
complete the computations.

Variable-precision arithmetic falls in between the other two in terms of
both cost and accuracy. A global parameter, set by the function digits,
controls the number of significant decimal digits. Increasing the number of
digits increases the accuracy, but also increases both the time and memory
requirements. The default value of digits is 32, corresponding roughly to
floating-point accuracy.

Example: Using the Different Kinds of Arithmetic

Rational Arithmetic

By default, Symbolic Math Toolbox software uses rational arithmetic
operations, i.e., MuPAD software’s exact symbolic arithmetic. Rational
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arithmetic is invoked when you create symbolic variables using the sym
function.

The sym function converts a double matrix to its symbolic form. For example,
if the double matrix is

format short;
A=11.1,1.2,1.3;2.1,2.2,2.8;3.1,3.2,3.3]

A =
1.1000 1.2000 1.3000
2.1000 2.2000 2.3000
3.1000 3.2000 3.3000

its symbolic form is:
S = sym(A)
S =
[ 11/10, 6/5, 13/10]

[ 21/10, 11/5, 23/10]
[ 31/10, 16/5, 33/10]

For this matrix A, it is possible to discover that the elements are the ratios of
small integers, so the symbolic representation is formed from those integers.
On the other hand, the statement

E = [exp(1) (1 + sqgrt(5))/2; log(3) rand]
returns a matrix
E =
2.7183 1.6180
1.0986 0.6324
whose elements are not the ratios of small integers, so
sym(E)
reproduces the floating-point representation in a symbolic form:

ans =
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[ 3060513257434037/1125899906842624, 910872158600853/562949953421312]
[ 2473854946935173/2251799813685248, 1423946432832521/2251799813685248]

Variable-Precision Numbers

Variable-precision numbers are distinguished from the exact rational
representation by the presence of a decimal point. A power of 10 scale factor,
denoted by 'e', is allowed. To use variable-precision instead of rational
arithmetic, create your variables using the vpa function.

For matrices with purely double entries, the vpa function generates the
representation that is used with variable-precision arithmetic. For example,
if you apply vpa to the matrix S defined in the preceding section, with
digits(4), by entering

vpa(S)
MATLAB returns the output

n

H H

H H

WnN=o»n
—_
W =
NN N
W N =
W w w

—_—_—— o

]
]
H ) ]

Applying vpa to the matrix E defined in the preceding section, with
digits(25), by entering

digits(25)
F = vpa(E)

returns

F
[ 2.718281828459045534884808, 1.618033988749894902525739]
[ 1.098612288668109560063613, 0.6323592462254095103446616]

Converting to Floating-Point

To convert a rational or variable-precision number to its MATLAB
floating-point representation, use the double function.

In the example, both double (sym(E)) and double(vpa(E)) return E.
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Another Example Using Different Kinds of Arithmetic

The next example is perhaps more interesting. Start with the symbolic
expression

f = sym('exp(pi*sqrt(163))"')
The statement

format long;
double(f)

produces the printed floating-point value

ans =
2.625374126407687e+017

Using the second argument of vpa to specify the number of digits,
vpa(f,18)
returns

ans =
262537412640768744.0

and, too,
vpa(f,25)
returns

ans =
262537412640768744.0

You might suspect that f actually has an integer value. This suspicion is
reinforced by the 30 digit value:

vpa(f,30)

ans =
262537412640768743.999999999999

Finally, the 40—digit value:
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vpa(f,40)

ans =
262537412640768743.9999999999992500725972

shows that f is very close to, but not exactly equal to, an integer.
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Linear Algebra

In this section...

“Basic Algebraic Operations” on page 3-66
“Linear Algebraic Operations” on page 3-67
“Eigenvalues” on page 3-72

“Jordan Canonical Form” on page 3-77

“Singular Value Decomposition” on page 3-79

“Eigenvalue Trajectories” on page 3-82

Basic Algebraic Operations

Basic algebraic operations on symbolic objects are the same as operations on
MATLAB objects of class double. This is illustrated in the following example.

The Givens transformation produces a plane rotation through the angle t.
The statements

syms t;
G = [cos(t) sin(t); -sin(t) cos(t)]

create this transformation matrix.

G =
[ cos(t), sin(t)]

[ -sin(t), cos(t)]

Applying the Givens transformation twice should simply be a rotation through
twice the angle. The corresponding matrix can be computed by multiplying G
by itself or by raising G to the second power. Both

A = G*G
and
A =G"2
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produce
A =
[ cos(t)"2 - sin(t)"2, 2*cos(t)*sin(t)]
[ -2*cos(t)*sin(t), cos(t)"2 - sin(t)"2]

The simple function
A = simple(A)

uses a trigonometric identity to return the expected form by trying
several different identities and picking the one that produces the shortest
representation.

A:
[ cos(2*t), sin(2*t)]
[ -sin(2*t), cos(2*t)]

The Givens rotation is an orthogonal matrix, so its transpose is its inverse.
Confirming this by

I =G." *G

which produces

I =

[ cos(t)"2 + sin(t)"2, 0]

[ 0, cos(t)"2 + sin(t)"2]
and then

I = simple(I)

I =

[ 1, 0]

[ 0, 1]

b

Linear Algebraic Operations

The following examples show how to do several basic linear algebraic
operations using Symbolic Math Toolbox software.

The command
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H = hilb(3)
generates the 3-by-3 Hilbert matrix. With format short, MATLAB prints

H =
1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

The computed elements of H are floating-point numbers that are the ratios of
small integers. Indeed, H is a MATLAB array of class double. Converting H
to a symbolic matrix

H = sym(H)

gives

1/2, 1/3, 1/4]

H
[ 1, 1/2, 1/3]
[
[ 1/3, 1/4, 1/5]

This allows subsequent symbolic operations on H to produce results that
correspond to the infinitely precise Hilbert matrix, sym(hilb(3)), not its
floating-point approximation, hilb(3). Therefore,

inv (H)
produces
9, -36, 30]

-36, 192, -180]
30, -180, 180]
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1/2160

You can use the backslash operator to solve a system of simultaneous linear
equations. For example, the commands

All three of these results, the inverse, the determinant, and the solution to
the linear system, are the exact results corresponding to the infinitely precise,
rational, Hilbert matrix. On the other hand, using digits(16), the command

digits(16);
V = vpa(hilb(3))

returns
V =
[ 1.0, 0.5, 0.3333333333333333]
[ 0.5, 0.3333333333333333, 0.25]
[ 0.3333333333333333, 0.25, 0.2]

The decimal points in the representation of the individual elements are the
signal to use variable-precision arithmetic. The result of each arithmetic
operation is rounded to 16 significant decimal digits. When inverting the
matrix, these errors are magnified by the matrix condition number, which for
hilb(3) is about 500. Consequently,

inv (V)
which returns

ans =
[ 9.000000000000061, -36.00000000000032, 30.0000000000003]
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[ -36.00000000000032, 192.0000000000017,
[ 30.0000000000003, -180.0000000000015,

shows the loss of two digits. So does
1/det (V)
which gives

ans =
2160.000000000018

and
V\b
which 1s

ans =
3.000000000000041
-24.00000000000021
30.00000000000019

-180.0000000000015]
180.0000000000014]

Since H is nonsingular, calculating the null space of H with the command

null(H)

returns an empty matrix:

ans =
[ empty sym ]

Calculating the column space of H with

colspace(H)

returns a permutation of the identity matrix:
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A more interesting example, which the following code shows, is to find a value

s for H(1,1) that makes H singular. The commands

syms s
H(1,1) = s
Z = det(H)

sol = solve(Z)

produce
H =
[ s, 1/2, 1/3]

[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

Z =
s/240 - 1/270

sol =
8/9

Then
H = subs(H, s, sol)
substitutes the computed value of sol for s in H to give
H =
[ 8/9, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]
Now, the command
det (H)
returns

ans =
0

and
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inv (H)
produces the message

ans =
FAIL

because H is singular. For this matrix, null space and column space are

nontrivial:

Z = null(H)
C = colspace(H)
Z =
3/10

-6/5

1

C =
[ 1, 0]
[ 0, 1]
[ -3/10, 6/5]

It should be pointed out that even though H is singular, vpa(H) is not. For any
integer value d, setting digits(d), and then computing inv(vpa(H)) results
in an inverse with elements on the order of 10~d.

Eigenvalues

The symbolic eigenvalues of a square matrix A or the symbolic eigenvalues
and eigenvectors of A are computed, respectively, using the commands E =
eig(A) and [V,E] = eig(A).

The variable-precision counterparts areE = eig(vpa(A)) and [V,E] =
eig(vpa(A)).

The eigenvalues of A are the zeros of the characteristic polynomial of A,
det(A-x*I), which is computed by poly(A).

The matrix H from the last section provides the first example:

H = sym([8/9 1/2 1/3; 1/2 1/3 1/4; 1/3 1/4 1/5])
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H =
[ 8/9, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

The matrix is singular, so one of its eigenvalues must be zero. The statement

[T,E] = eig(H)

produces the matrices T and E. The columns of T are the eigenvectors of H and
the diagonal elements of E are the eigenvalues of H:

T
[ 218/285 - (4*12589"~(1/2))/285, (4*12589"(1/2))/285 + 218/285, 3/10]
[
[

292/285 - 12589"~(1/2)/285, 12589~ (1/2)/285 + 292/285, -6/5]
1, 1, 1]
E =
[ 32/45 - 12589~(1/2)/180, 0, 0]
[ 0, 12589~(1/2)/180 + 32/45, 0]
[ 0, 0, 0]

It may be easier to understand the structure of the matrices of eigenvectors,
T, and eigenvalues, E, if you convert T and E to decimal notation. To do so,
proceed as follows. The commands

Td = double(T)
Ed = double(E)
return
Td =
-0.8098 2.3397 0.3000
0.6309 1.4182 -1.2000
1.0000 1.0000 1.0000
Ed =
0.0878 0 0
0 1.3344 0
0 0 0
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The first eigenvalue is zero. The corresponding eigenvector (the first column
of Td) is the same as the basis for the null space found in the last section. The
other two eigenvalues are the result of applying the quadratic formula to

2 64 253
x4 ——x+

45 2160
syms X
g = simple(factor(poly(H))/x);
solve(Q)

which is the quadratic factor in factor (poly(H)):

ans =
32/45 - 12589~ (1/2)/180
12589~ (1/2) /180 + 32/45

Closed form symbolic expressions for the eigenvalues are possible only when
the characteristic polynomial can be expressed as a product of rational
polynomials of degree four or less. The Rosser matrix is a classic numerical
analysis test matrix that illustrates this requirement. The statement

R = sym(rosser)

generates

R =

[ 611, 196, -192, 407, -8, -52, -49, 29]
[ 196, 899, 113, -192, -71, -43, -8, -44]
[ -192, 113, 899, 196, 61, 49, 8, 52]
[ 407, -192, 196, 611, 8, 44, 59, -23]
[ -8, -71, 61, 8, 411, -599, 208, 208]
[ -52, -43, 49, 44, -599, 411, 208, 208]
[ -49, -8, 8, 59, 208, 208, 99, -911]
[

29, -44, 52, -23, 208, 208, -911, 99]
The commands

p = poly(R);
pretty(factor(p))

produce
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2 2 2
X (x - 1020) (x - 1040500) (x - 1020 x + 100) (x - 1000)

The characteristic polynomial (of degree 8) factors nicely into the product of
two linear terms and three quadratic terms. You can see immediately that
four of the eigenvalues are 0, 1020, and a double root at 1000. The other four
roots are obtained from the remaining quadratics. Use

eig(R)
to find all these values

ans =
0
1000
1000
1020
510 - 100*26"~(1/2)
100*26~(1/2) + 510
-10*10405~ (1/2)
10*10405" (1/2)

The Rosser matrix is not a typical example; it is rare for a full 8-by-8 matrix
to have a characteristic polynomial that factors into such simple form. If you

change the two “corner” elements of R from 29 to 30 with the commands

S =R; S(1,8) = 30; S(8,1) = 30;

and then try

p = poly(S)
you find
p =

X"8 - 4040*x"7 + 5079941*x"6 + 82706090*x"5...
- 5327831918568*x"4 + 4287832912719760*x"3...
- 1082699388411166000*x"2 + 51264008540948000*x. ..
+ 40250968213600000
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You also find that factor(p) is p itself. That is, the characteristic polynomial
cannot be factored over the rationals.

For this modified Rosser matrix
F = eig(9S)
returns

F =

1020.420188201504727818545749884
1019.9935501291629257348091808173
1019.5243552632016358324933278291
1000.1206982933841335712817075454
999.94691786044276755320289228602
0.21803980548301606860857564424981
-0.17053529728768998575200874607757
-1020.05321425589151659318942526

Notice that these values are close to the eigenvalues of the original Rosser
matrix. Further, the numerical values of F are a result of MuPAD software’s
floating-point arithmetic. Consequently, different settings of digits do not
alter the number of digits to the right of the decimal place.

It is also possible to try to compute eigenvalues of symbolic matrices, but
closed form solutions are rare. The Givens transformation is generated as the
matrix exponential of the elementary matrix

Al

Symbolic Math Toolbox commands

syms t
A = sym([0 1; -1 0]);
G = expm(t*A)

return
G =
[ (1/exp(t*i))/2 + exp(t*i)/2,
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((1/exp(t*i))*i)/2 - (exp(t*i)*i)/2]
[-((1/exp(t*1i))*i)/2 + (exp(t*i)*i)/2,
(1/exp(t*i))/2 + exp(t*i)/2]

You can simplify this expression with the simple command:

[G,how] = simple(G)

cos(t), sin(t)]

G =
[
[ -sin(t), cos(t)]

how =

simplify

Next, the command

g = eig(G)
produces
g =

cos(t) - sin(t)*i

cos(t) + sin(t)*i

You can use simple to simplify this form of g:
[g,how] = simple(g)

g:
1/exp(t*i)
exp(t*i)

how =
rewrite(exp)

Jordan Canonical Form

The Jordan canonical form results from attempts to diagonalize a matrix
by a similarity transformation. For a given matrix A, find a nonsingular
matrix V, so that inv (V) *A*V, or, more succinctly, J = V\A*V, is “as close to
diagonal as possible.” For almost all matrices, the Jordan canonical form is
the diagonal matrix of eigenvalues and the columns of the transformation
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matrix are the eigenvectors. This always happens if the matrix is symmetric
or if it has distinct eigenvalues. Some nonsymmetric matrices with multiple
eigenvalues cannot be diagonalized. The Jordan form has the eigenvalues
on its diagonal, but some of the superdiagonal elements are one, instead of
zero. The statement

J = jordan(A)
computes the Jordan canonical form of A. The statement
[V,J] = jordan(A)

also computes the similarity transformation. The columns of V are the
generalized eigenvectors of A.

The Jordan form is extremely sensitive to perturbations. Almost any change
in A causes its Jordan form to be diagonal. This makes it very difficult to
compute the Jordan form reliably with floating-point arithmetic. It also
implies that A must be known exactly (i.e., without roundoff error, etc.). Its
elements must be integers, or ratios of small integers. In particular, the
variable-precision calculation, jordan(vpa(A)), is not allowed.

For example, let

A = sym([12,32,66,116;-25,-76,-164,-294;
21,66,143,256;-6,-19,-41,-73])

—_

2, 32, 66, 116]
5, -76, -164, -294]
1, 66, 143, 256]
-6, -19, -41, -73]

NN

A

[

[

[

[

Then
[V,J] = jordan(A)

produces

4
-6, 8, -11, -8]
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[ 4! '77 10: 7]
'1! 27 '3: '2]

0]
, 0]
y 1]
y 2]

b

-

1, 1

o, 1,
0, 0,
0, 0

b

—_——_———
O N O O

Therefore A has a double eigenvalue at 1, with a single Jordan block, and a
double eigenvalue at 2, also with a single Jordan block. The matrix has only
two eigenvectors, V(:,1) and V(:,3). They satisfy

A*V(:,1)
A*V(:,3)

1%V (1,1)
2%V (:,3)

The other two columns of V are generalized eigenvectors of grade 2. They
satisfy

A*V(:,2)
A*V(:,4)

1*V(:,2) + V(:,1)
2*V(:,4) + V(:,3)

In mathematical notation, with V;=V(i,]), the columns of V and eigenvalues
satisfy the relationships

(A — A]_I)Uz =U

(A—).QI)UAL =VUg.

Singular Value Decomposition

Only the variable-precision numeric computation of the complete singular
vector decomposition is available in the toolbox. One reason for this is that
the formulas that result from symbolic computation are usually too long and
complicated to be of much use. If A is a symbolic matrix of floating-point

or variable-precision numbers, then

S = svd(A)

computes the singular values of A to an accuracy determined by the current
setting of digits. And
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[U,S,V] = svd(A);

produces two orthogonal matrices, U and V, and a diagonal matrix, S, so that
A = U*S*V';

Consider the n-by-n matrix A with elements defined by A(i,j) = 1/(1 - j +
1/2). The most obvious way of generating this matrix is

n =>5;
for i=1:n
for j=1:n
A(i,j) = sym(1/(i-j+1/2));
end
end

For n = 5, the matrix is

A
A:

[ 2, -2, -2/3, -2/5, -2/7]
[ 2/3, 2, -2, -2/3, -2/5]
[ 2/5, 2/8, 2, -2, -2/3]
[ 2/7, 2/5, 2/83, 2, -2]

[ 2/9, 2/7, 2/5, 2/8, 2]
It turns out many of the singular values of these matrices are close to m.

The most efficient way to generate the matrix is
n =>5;

[J,I] = meshgrid(1:n);
A = sym(1./(I - J+1/2));

Since the elements of A are the ratios of small integers, vpa(A) produces

a variable-precision representation, which is accurate to digits precision.
Hence

S = svd(vpa(A))
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computes the desired singular values to full accuracy. With n = 16 and
digits(30), the result is

S =
3.14159265358979323846255035973
3.14159265358979323843066846713
3.14159265358979323325290142782
3.14159265358979270342635559052

3.1415926535897543920684990722
3.14159265358767361712392612382
3.14159265349961053143856838564
3.14159265052654880815569479613
3.14159256925492306470284863101
3.14159075458605848728982577118

3.1415575435991808369105065826
3.14106044663470063805218371923
3.13504054399744654843898901261
3.07790297231119748658424727353
2.69162158686066606774782763593
1.20968137605668985332455685355

Compare S with pi, the floating-point representation of . In the vector
below, the first element is computed by subtraction with variable-precision
arithmetic and then converted to a double:

format long;
double(pi*ones(16,1)-S)

The results are

ans =

.000000000000000
.000000000000000
.000000000000000
.000000000000001
.000000000000039
.000000000002120
.000000000090183
.000000003063244
.000000084334870
.000001899003735

OO O0OO0OO0ODO0OO0OO0OOoOOo
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.000035109990612
.000532206955093
.006552109592347
.063689681278596
.449971066729127
.931911277533103

- OO O0OOoOo

Since the relative accuracy of pi is pi*eps, which is 6.9757e-16, the result
confirms the suspicion that four of the singular values of the 16-by-16 example
equal m to floating-point accuracy.

Eigenvalue Trajectories

This example applies several numeric, symbolic, and graphic techniques to
study the behavior of matrix eigenvalues as a parameter in the matrix is
varied. This particular setting involves numerical analysis and perturbation
theory, but the techniques illustrated are more widely applicable.

In this example, you consider a 3-by-3 matrix A whose eigenvalues are 1, 2, 3.
First, you perturb A by another matrix £ and parameter t: A > A+tE . As

¢t increases from 0 to 10, the eigenvalues 4y =1, A9 =2, 13 =3 change to

2y =1.5596+0.2726i, Ay =1.5596-0.2726i, 13 =2.8808.
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03 (1) -
X
0.2 —
0.1 =
A1) AM2) A3)
or © Q X Q) =
NE)]
-0.1f -
—02- i
X
-0.3F 2(2) -
1 1 1 1 1 1
0 0.5 1 1.5 2 25 3

35

This, in turn, means that for some value of t=1,0< 1< 1076 , the perturbed

matrix A(t) = A + tE has a double eigenvalue A = Ay9. The example shows how
to find the value of t, called 7, where this happens.

The starting point is a MATLAB test example, known as gallery(3).

A = gallery(3)

A =
-149 -50 -154
537 180 546
-27 -9 -25

This is an example of a matrix whose eigenvalues are sensitive to the

effects of roundoff errors introduced during their computation. The actual
computed eigenvalues may vary from one machine to another, but on a typical
workstation, the statements
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format long
e = eig(A)

produce

e:
1.000000000010722
1.999999999991790
2.999999999997399

Of course, the example was created so that its eigenvalues are actually 1, 2,
and 3. Note that three or four digits have been lost to roundoff. This can be
easily verified with the toolbox. The statements

B = sym(A);

e = eig(B)'

p = poly(B)

f = factor(p)
produce

e =

(v, 2, 3]

p

X*3 - B6*X"2 + 11*x - 6

(x - 3)*(x - 1)*(x - 2)

Are the eigenvalues sensitive to the perturbations caused by roundoff error
because they are “close together’? Ordinarily, the values 1, 2, and 3 would
be regarded as “well separated.” But, in this case, the separation should be
viewed on the scale of the original matrix. If A were replaced by A/1000,
the eigenvalues, which would be .001, .002, .003, would “seem” to be closer
together.

But eigenvalue sensitivity is more subtle than just “closeness.” With a
carefully chosen perturbation of the matrix, it is possible to make two of its
eigenvalues coalesce into an actual double root that is extremely sensitive
to roundoff and other errors.
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One good perturbation direction can be obtained from the outer product of the
left and right eigenvectors associated with the most sensitive eigenvalue. The
following statement creates the perturbation matrix:

E = [130,-390,0;43,-129,0;133,-399,0]
E =
130 -390 0
43 -129 0
133 -399 0

The perturbation can now be expressed in terms of a single, scalar parameter
t. The statements

syms x t
A=A+ t*E

replace A with the symbolic representation of its perturbation:
A =
[130*t - 149, - 390*t - 50, -154]
[ 43*t + 537, 180 - 129*t, 546]
[ 133*t - 27, - 399*t - 9, -25]
Computing the characteristic polynomial of this new A
p = simple(poly(A))

gives

p:
11*x - 1221271*t - x"2*(t + 6) + 492512*t*x + x"3 - 6

p is a cubic in x whose coefficients vary linearly with t.

It turns out that when t is varied over a very small interval, from 0 to 1.0e—6,
the desired double root appears. This can best be seen graphically. The first
figure shows plots of p, considered as a function of x, for three different values
of t: t =0, t =0.5e-6, and t = 1.0e—6. For each value, the eigenvalues are
computed numerically and also plotted:

X = .8:.01:3.2;
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for k = 0:2
c sym2poly(subs(p,t,k*0.5e-6));
y = polyval(c,x);
lambda = eig(double(subs(A,t,k*0.5e-6)));
subplot(3,1,3-k)

plot(x,y,"'-',x,0*x,"':"',lambda,0*1lambda, '0")
axis([.8 3.2 -.5 .5])
text(2.25,.35,['t = ' num2str( k*0.5e-6 )1);
end
0.5 T
t=1e-006
or o] B
_05 1 1 Il Il Il
1 15 2 25 3

The bottom subplot shows the unperturbed polynomial, with its three roots at
1, 2, and 3. The middle subplot shows the first two roots approaching each
other. In the top subplot, these two roots have become complex and only

one real root remains.

The next statements compute and display the actual eigenvalues

e = eig(A);
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ee = subexpr(e);

sigma =

(1221271*t) /2 + (t + 6)"3/27 - ((492512*t + 11)*(t + 6))/6 +...
(((492512*t)/3 - (t + 6)"2/9 + 11/3)"3 + ((1221271*t)/2 +...

(t + 6)°3/27 - ((492512*t + 11)*(t + 6))/6 + 3)"2)"(1/2) + 3
pretty(ee)

showing that e (2) and e(3) form a complex conjugate pair:

-+
2 |
1 492512 t (t +6) 11 |
----------------- + |
t 3 3 9 3
-+ osigma - --e-eeieieieia o + 2 |
3 1 |
|
3 |
sigma |
|
/ 2 \
| 1 492512 t (t +6) 11 |
I e e s LR
1/2 | 3 3 9 3 |
3 | sigma 4+ ---------oioiia | i |
2 | 1 | |
492512 t (t +6) 11 | | |
----------------- + | 3 |
3 9 3 \ sigma /
------------------------ F D o e e e e e e e e e meeeaaoaa- |
1 2 |
|
3 |
2 sigma |
|
/ 2 \
|

| 1 492512 t  (t + 6) 1
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| |
| 1/2 | 3 3 9 3 |

| 3 | sigma + -----------oiooiooaoo-- [ i |
| 1 2 | 1 | |
| 492512 t  (t + 6) 11 | | |
| 3 emeeeene s eeesees + - | 3 I
| t sigma 3 9 3 \ sigma / |
| S 2 |
| 3 2 1 2 |
| |
| 3 |
| 2 sigma |
+- +

Next, the symbolic representations of the three eigenvalues are evaluated at
many values of t

tvals = (2:-.02:0)' * 1.e-6;
r = size(tvals,1);

C = size(e,1);

lambda = zeros(r,c);

for k = 1:c

lambda(:,k) = double(subs(e(k),t,tvals));
end
plot(lambda,tvals)

xlabel('\lambda'); ylabel('t');
title('Eigenvalue Transition')

to produce a plot of their trajectories.
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Above t = 0.8e%, the graphs of two of the eigenvalues intersect, while below
t = 0.8e7%, two real roots become a complex conjugate pair. What is the precise
value of t that marks this transition? Let 7 denote this value of t.

One way to find the exact value of 7 involves polynomial discriminants. The
discriminant of a quadratic polynomial is the familiar quantity under the
square root sign in the quadratic formula. When it is negative, the two roots

are complex.

There is no discrim function in the toolbox, but there is one in the MuPAD
language. The statement

doc(symengine, 'discrim')

gives the MuPAD help for the function.
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MuPAD documentation

Provide feedback about this page
polylib::discrim — discriminant of a polynomial
polylib: :discrim(p, =) returnsthe discriminant of the polynomial ¢ with respect
to the variable =.

— Examples

Call:
polylib::discrim(p, =)

Parametars-

This shows that the discrim function is in the polylib library. Use these
commands

syms a b ¢ x
evalin(symengine, 'polylib::discrim(a*x"2+b*x+c, x)')

to show the generic quadratic’s discriminant, b? - 4ac:

ans =
b*2 - 4*a*c

The discriminant for the perturbed cubic characteristic polynomial is
obtained, using

discrim = feval(symengine, 'polylib::discrim',p,Xx)

which produces

discrim =
242563185060*t"4 - 477857003880091920*t"3 +...
1403772863224*t"2 - 5910096*t + 4

The quantity 7 is one of the four roots of this quartic. You can find a numeric
value for 7 with the following code.

s = solve(discrim);
tau = vpa(s)
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tau =
1970031. 040618045536 18913725474883634597991201389
0.000000783792490596794010485879469854518820556090553664
0.00000107692481604921513807537160160597784208236311263 - 0.00000308544636502289065492747* i
0.00000308544636502289065492746538275636180217710757295%1 + 0.00000107692481604921513807537160160597784249167873707
Of the four solutions, you know that
tau = tau(2)

is the transition point

tau =
0.00000078379249059679401048084

because it 1s closest to the previous estimate.

A more generally applicable method for finding 7 is based on the fact that, at a
double root, both the function and its derivative must vanish. This results in
two polynomial equations to be solved for two unknowns. The statement

sol = solve(p,diff(p,'x"))

solves the pair of algebraic equations p = 0 and dp/dx = 0 and produces

sol
[4x1 sym]
[4x1 sym]

X + 1

Find 7 now by

format short
tau = double(sol.t(2))

which reveals that the second element of sol.t is the desired value of z:

tau =
7.8379e-007

Therefore, the second element of sol.x
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sigma = double(sol.x(2))

is the double eigenvalue

sigma =
1.5476

To verify that this value of 7 does indeed produce a double eigenvalue at

o =1.5476, substitute 7 for ¢ in the perturbed matrix A(f) = A + ¢tE and find
the eigenvalues of A(¢). That is,

e = eig(double(subs(A, t, tau)))
e:

1.5476

1.5476

2.9048

confirms that o =1.5476 is a double eigenvalue of A(¢) for ¢t = 7.8379e—07.
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Solving Equations

In this section...

“Solving Algebraic Equations” on page 3-93
“Several Algebraic Equations” on page 3-94
“Single Differential Equation” on page 3-97

“Several Differential Equations” on page 3-100

Solving Algebraic Equations

If S is a symbolic expression,

solve(S)

attempts to find values of the symbolic variable in S (as determined by
symvar) for which S is zero. For example,

syms a b ¢ x

§ = a*x"2 + b*x + cj
solve(S)

uses the familiar quadratic formula to produce
ans =
-(b + (b*2 - 4*a*c)~(1/2))/(2*a)
-(b - (b*2 - 4*a*c)"~(1/2))/(2*a)

This is a symbolic vector whose elements are the two solutions.

If you want to solve for a specific variable, you must specify that variable
as an additional argument. For example, if you want to solve S for b, use
the command

b = solve(S,b)
which returns

b:
-(a*x"2 + ¢)/x
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particular, the command

Note that these examples assume equations of the form f(x) = 0. If you need
to solve equations of the form f(x) = g(x), you must use quoted strings. In

s = solve('cos(2*x) + sin(x) = 1")

returns a vector with three solutions

0
pi/6
(5*pi) /6

There are also solutions at each of these results plus km for integer &, as you
can see in the MuPAD solution:

m
N

Several Algebraic Equations

This section explains how to solve systems of equations using Symbolic Math
Toolbox software. As an example, suppose you have the system

x%y2 =0
-2 =q,
2

alpha =

and you want to solve for x and y. First, create the necessary symbolic objects.
syms X y;

sym('alpha');

There are several ways to address the output of solve. One is to use a
two-output call

[x, yI =

solve(x~2*y~2, x-y/2 - alpha)
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which returns

X:
alpha
0
y:
0
-2*alpha

Modify the first equation to x2y? = 1 and there are more solutions.

egs1 = 'x"2*y"2=1, x-y/2-alpha’;
[x,y] = solve(eqs1)

produces four distinct solutions:

X:
alpha/2 + (alpha®2 + 2)"~(1/2)/2
alpha/2 + (alpha~2 - 2)"(1/2)/2
alpha/2 - (alpha®2 + 2)"~(1/2)/2
alpha/2 - (alpha®2 - 2)~(1/2)/2
y =

(alpha~2 + 2)~(1/2) - alpha
(alpha~2 - 2)~(1/2) - alpha
- alpha - (alpha®2 + 2)"(1/2)
- alpha - (alpha®~2 - 2)"(1/2)

Since you did not specify the dependent variables, solve uses symvar to
determine the variables.

This way of assigning output from solve is quite successful for “small”
systems. Plainly, if you had, say, a 10-by-10 system of equations, typing

[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10] = solve(...)

is both awkward and time consuming. To circumvent this difficulty, solve
can return a structure whose fields are the solutions. In particular, consider
the system u”2 - v*2 = a*2,u + v = 1,a"2 - 2*a = 3. The command
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S = solve('u*2 - v*2 = a*2', 'u+v=1", 'a*2 - 2*a = 3')
returns
S:
a: [2x1 sym]
u: [2x1 sym]
v: [2x1 sym]

The solutions for a reside in the “a-field” of S. That is,

S.a

produces

ans =
-1
3

Similar comments apply to the solutions for u and v. The structure S can
now be manipulated by field and index to access a particular portion of the
solution. For example, if you want to examine the second solution, you can
use the following statement

s2 = [S.a(2), S.u(2), S.v(2)]

to extract the second component of each field.

w 1

s2
[ s 9, -4]
The following statement

M= [S.a, S.u, S.v]
creates the solution matrix M

» 1, 0]

M =
[ -1
[ 35 5! '4]

whose rows comprise the distinct solutions of the system.
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Linear systems of simultaneous equations can also be solved using matrix
division. For example,

clear u v x vy

sSyms u v Xy

S = solve(x + 2*y - u, 4*x + 5*y - v);
sol = [S.x; S.y]

A
b
z

[12; 4 5];
[u; vI;
A\b

results in

sol =
(2*v)/3 - (5*u)/3
(4*u)/3 - v/8

Z =
(2*v) /3 - (5*u)/3
(4*u)/3 - v/8

Thus s and z produce the same solution, although the results are assigned
to different variables.

Single Differential Equation

The function dsolve computes symbolic solutions to ordinary differential
equations. The equations are specified by symbolic expressions containing
the letter D to denote differentiation. The symbols D2, D3, ... DN, correspond to
the second, third, ..., Nth derivative, respectively. Thus, D2y is the toolbox
equivalent of d?*y/dt?. The dependent variables are those preceded by D and
the default independent variable is t. Note that names of symbolic variables
should not contain D. The independent variable can be changed from t to some
other symbolic variable by including that variable as the last input argument.

Initial conditions can be specified by additional equations. If initial conditions
are not specified, the solutions contain constants of integration, C1, C2, etc.

The output from dsolve parallels the output from solve. That is, you can call
dsolve with the number of output variables equal to the number of dependent
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variables or place the output in a structure whose fields contain the solutions
of the differential equations.

Example 1
The following call to dsolve

dsolve('Dy = t*y')
uses Yy as the dependent variable and t as the default independent variable.

The output of this command is

ans =
C2*exp(t~2/2)

y = C*exp(t~2/2) is a solution to the equation for any constant C.
To specify an initial condition, use

y = dsolve('Dy = t*y', 'y(0) = 2")
This produces

y:
2*%exp(t~2/2)

Notice that y is in the MATLAB workspace, but the independent variable t
1s not. Thus, the command diff(y,t) returns an error. To place t in the
workspace, enter syms t.

Example 2

Nonlinear equations may have multiple solutions, even when initial
conditions are given:

x = dsolve('(Dx + x)*2 = 1', 'x(0) = 0")
results in

X:
1/exp(t) - 1
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1 - 1/exp(t)

Example 3
Here is a second-order differential equation with two initial conditions, and
the default independent variable changed to x. The commands

y = dsolve('D2y = cos(2*x) - y', 'y(0) = 1",

'Dy(0) = 0', 'x');
simplify(y)

produce

ans =
1 - (8*(cos(x)/2 - 1/2)"2)/3

Example 4

The key issues in this example are the order of the equation and the initial
conditions. To solve the ordinary differential equation

dx®

uw0)=1, ©'(0)=-1, u”(0) =,

with x as the independent variable, type

u = dsolve('D3u = u', 'u(0) = 1', 'Du(0) = -1"',
'D2u(0) = pi', 'x')

Use D3u to represent d®u/dx® and D2u(0) for u”(0).

pi*exp(x))/3 - (cos((3~(1/2)*x)/2)*(pi/3 - 1))/exp(x/2)
(837 (1/2)*sin((3~(1/2)*x)/2)*(pi + 1))/ (3*exp(x/2))

|~ C
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Further ODE Examples

This table shows a few more examples of differential equations and their
Symbolic Math Toolbox syntax. The final entry in the table is the Airy
differential equation, whose solution is referred to as the Airy function.

Differential Equation MATLAB Command

dy —t y = dsolve('Dy+4*y = exp(-t)',
E+4y(t):e 'v(0) = 1)

y(0) =1

2x%y" + 3xy' —y=0 y = dsolve('2*x*2*D2y + 3*x*Dy - y =
(' =dldx) 0', 'x')

dzy y = dsolve('D2y = x*y', 'y(0) = 0',
-——gzzxy(x) 'y(3) = besselk(1/3, 2*sqrt(3))/pi',
dx |X| )

9(0)=0, y(3) = %Kl 1323

(The Airy equation)

Several Differential Equations

The function dsolve can also handle several ordinary differential equations
in several variables, with or without initial conditions. For example, here is a
pair of linear, first-order equations.

S = dsolve('Df = 3*f + 4*g', 'Dg = -4*f + 3*g')

The computed solutions are returned in the structure S. You can determine
the values of f and g by typing

f =s.f
g =S.9
f:

C2*cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)
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g:
Ci1*cos(4*t)*exp(3*t) - C2*sin(4*t)*exp(3*t)

If you prefer to recover f and g directly as well as include initial conditions,
type

[f, g] = dsolve('Df = 3*f + 4*g, Dg = -4*f + 3*g',...

'f(0) =0, g(0) =1")

f:
sin(4*t)*exp(3*t)

g:
cos(4*t)*exp(3*t)
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In this section...

“The Fourier and Inverse Fourier Transforms” on page 3-102

“The Laplace and Inverse Laplace Transforms” on page 3-109

“The Z— and Inverse Z—transforms” on page 3-115

The Fourier and Inverse Fourier Transforms
The Fourier transform of a function f(x) is defined as

Flflw) = [ flx)e ™ dx,

—o0

and the inverse Fourier transform (IFT) as

F1 [f](@:% j Fw)e™*duy.

We refer to this formulation as the Fourier transform of f with respect to x as
a function of w. Or, more concisely, the Fourier transform of f with respect
to x at w. Mathematicians often use the notation F[f] to denote the Fourier
transform of f. In this setting, the transform is taken with respect to the
independent variable of f (if f = f(¢), then ¢ is the independent variable; f = f(x)
implies that x is the independent variable, etc.) at the default variable w.
We refer to F[f] as the Fourier transform of f at w and F'[f] is the IFT of f
at x. See fourier and ifourier in the reference pages for tables that show
the Symbolic Math Toolbox commands equivalent to various mathematical
representations of the Fourier and inverse Fourier transforms.

For example, consider the Fourier transform of the Cauchy density function,

(m(1 + 2%)™

syms X
cauchy = 1/(pi*(1+x°2));
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fcauchy = fourier(cauchy)

fcauchy =
((pi*heaviside(w))/exp(w) + pi*heaviside(-w)*exp(w))/pi

fcauchy = expand(fcauchy)

fcauchy =
heaviside(w)/exp(w) + heaviside(-w)*exp(w)

ezplot (fcauchy)

heavisidefw)fexpln) + heaviside(-w) expls)

The Fourier transform is symmetric, since the original Cauchy density
function is symmetric.

To recover the Cauchy density function from the Fourier transform, call
ifourier:

finvfcauchy = ifourier(fcauchy)
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finvfcauchy =
-(1/(- 1 + x*1) - 1/(1 + x*1))/(2*pi)

simplify(finvfcauchy)

ans =
1/(pi*(x"2 + 1))

An application of the Fourier transform is the solution of ordinary and partial
differential equations over the real line. Consider the deformation of an
infinitely long beam resting on an elastic foundation with a shock applied to
it at a point. A “real world” analogy to this phenomenon is a set of railroad
tracks atop a road bed.

&(x)

bed rock

stiffness
constant v
¥(x)

The shock could be induced by a pneumatic hammer blow.

The differential equation idealizing this physical setting is

—+—y:%8(x), —o0 < X < oo,

Here, E represents elasticity of the beam (rail road track), I is the “beam
constant,” and & is the spring (road bed) stiffness. The shock force on the
right hand side of the differential equation is modeled by the Dirac Delta
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function 6(x). If you are unfamiliar with 6(x), you may be surprised to learn
that (despite its name), it is not a function at all. Rather, 6(x) is an example of
what mathematicians call a distribution. The Dirac Delta function (named
after the physicist Paul Dirac) has the following important property

oo

[ Fee-pdydy = fa).

—o0

A definition of the Dirac Delta function is

8(x) = lim ny(_1/9,,1/2n) (%),
n—oo

where

1 1
1 for ——<x<—
X(=1/2n,1/2n) (%) = 2n 2n
0 otherwise.

You can evaluate the Dirac Delta function at a point (say) x = 3, using the
commands

syms X
del = sym('dirac(x)"');
vpa(subs(del,x,3))

which return

Returning to the differential equation, let Y(w) = F[y(x)](w) and
A(w) = F[6(x)](w). Indeed, try the command fourier(del,x,w). The Fourier
transform turns differentiation into exponentiation, and, in particular,

4
F{%](w) = wiYw).
X
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To see a demonstration of this property, try this

syms w X
fourier (diff(sym('y(x)"'), x, 4), X, w)

which returns

ans =
wr4*transform: :fourier(y(x), X, -w)

Note that you can call the fourier command with one, two, or three inputs
(see the reference pages for fourier). With a single input argument,
fourier(f) returns a function of the default variable w. If the input argument
is a function of w, fourier(f) returns a function of t. All inputs to fourier
must be symbolic objects.

We now see that applying the Fourier transform to the differential equation
above yields the algebraic equation

(w4 + % )Y(w) = Aw),

or
Yw) = Aw)Gw),

where

Gw) = =F[g(x)]w)

o
wh s 2
EI

for some function g(x). That is, g is the inverse Fourier transform of G:
g) = F[G(w)](x)
The Symbolic Math Toolbox counterpart to the IFT is ifourier. This behavior

of ifourier parallels fourier with one, two, or three input arguments (see
the reference pages for ifourier).
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Continuing with the solution of our differential equation, we observe that
the ratio

K
EI

is a relatively “large” number since the road bed has a high stiffness constant
k and a rail road track has a low elasticity £ and beam constant I. We make
the simplifying assumption that

S =1024.

EI

This is done to ease the computation of F ~![G(w)](x). Proceeding, we type

G 1/(w*4 + 1024);
g ifourier(G, w, Xx);
g = simplify(g);

pretty(g)

and see

1/2 / pi \ 1/2 / pi \
2 sin| -- + 4 x | heaviside(x) 2 heaviside(-x) sin| -- - 4 x | exp(4 x)

\ 4 / \ 4 /

512 exp(4 x) 512

Notice that g contains the Heaviside distribution

1 for x>0
H(x)=4 0 for x<0
1/2 for x=0.

Since Y is the product of Fourier transforms, y is the convolution of the
transformed functions. That is, F[y] = Y(w) = A(w) G(w) = F[8] F[g] implies
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oo

Y®) =6+ ) = [ gle-ys(ydy = gx).

—oo

by the special property of the Dirac Delta function. To plot this function, we
must substitute the domain of x into y(x), using the subs command.

XX -3:0.05:3;

YY double(subs(g, x, XX));

plot (XX, YY)

title('Beam Deflection for a Point Shock')
xlabel('x"'); ylabel('y(x)"');

The resulting graph
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«io Beam Deflectian fora Point Shock
20 T T T T T
151 e
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%]

shows that the impact of a blow on a beam is highly localized; the greatest
deflection occurs at the point of impact and falls off sharply from there. This
is the behavior we expect from experience.

The Laplace and Inverse Laplace Transforms
The Laplace transform of a function f(¢) is defined as

L[f](s) = j fe td,
0
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while the inverse Laplace transform (ILT) of f(s) is

C+ioo
-1 _ 1 st
L [f](t)_—zni j f(s)etds,

c—loo

where c is a real number selected so that all singularities of f(s) are to the left
of the line s = ¢. The notation L[f] denotes the Laplace transform of f at s.
Similarly, L7'[f] is the ILT of f at &.

The Laplace transform has many applications including the solution
of ordinary differential equations/initial value problems. Consider the
resistance-inductor-capacitor (RLC) circuit below.

N1

llz @

R1 R2 R3

+

]
'|
L N2 C

Let Rj and Ij, j = 1, 2, 3 be resistances (measured in ohms) and currents
(amperes), respectively; L be inductance (henrys), and C be capacitance
(farads); E(¢) be the electromotive force, and @(¢) be the charge.

3-110



Integral Transforms and Z-Transforms

By applying Kirchhoff’s voltage and current laws, Ohm’s Law, and Faraday’s
Law, you can arrive at the following system of simultaneous ordinary
differential equations.

dly Ry d Ry -R

aly Ry d@ R - Ry BB no=1,
dt L dt L
aQ 1
dt R3 + R2

1 Ry
(E(t)—EQ(t)J Foteh, Q=G

Let’s solve this system of differential equations using laplace. We will first
treat the Rj, L, and C as (unknown) real constants and then supply values
later on in the computation.

syms R1 R2 R3 L C real

dI1 = sym(' d1ff(I1(t) t)'); d@ = sym('diff(Q(t),t)"');
I1 = sym('I1(t)"); Q = sym('Q(t)");

syms t s

E = sin(t); % Voltage

eql = dI1 + R2*dQ/L - (R2 - R1)*I1/L;

eq2 = d@ - (E - Q/C)/(R2 + R3) - R2*I1/(R2 + R3);

At this point, we have constructed the equations in the MATLAB workspace.
An approach to solving the differential equations is to apply the Laplace
transform, which we will apply to eq1 and eg2. Transforming eq1 and eq2

L1 laplace(eqil,t,s)
L2 = laplace(eq2,t,s)

returns

L1 =

s*laplace(I1(t), t, s) - I1(0)

+ ((R1 - R2)*laplace(It1(t), t, s))/L

- (R2*(Q(0) - s*laplace(Q(t), t, s)))/L

L2 =

s*laplace(Q(t), t, s) - Q(0)

- (R2*laplace(If1(t), t, s))/(R2 + R3) - (C/(s"2 + 1)
- laplace(Q(t), t, s))/(C*(R2 + R3))
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Now we need to solve the system of equations L1 = 0, L2 = 0 for
laplace(I1(t),t,s) and laplace(Q(t),t,s), the Laplace transforms of I,
and @, respectively. To do this, we need to make a series of substitutions. For
the purposes of this example, use the quantities RI = 4 Q (ohms), R2=2 Q,
R3= 3Q, C=1/4farads, L = 1.6 H (henrys), I1(0) = 15 A (amperes), and Q(0)
= 2 A/sec. Substituting these values in L1

syms LI1 LQ
NI1 = subs(L1,{R1,R2,R3,L,C,"'I1(0)"',"'Q(0)"'},
{4,2,3,1.6,1/4,15,2})

returns

NI1 =
s*laplace(I1(t), t, s) + (5*s*laplace(Q(t), t, s))/4
+ (b*laplace(I1(t), t, s))/4 - 35/2

The substitution

NQ =
subs(L2,{R1,R2,R3,L,C, 'I1(0)"','Q(0)"'},{4,2,3,1.6,1/4,15,2})

returns

NQ =
s*laplace(Q(t), t, s) - 1/(5*(s"2 + 1))
+ (4*laplace(Q(t), t, s))/5 - (2*laplace(It1(t), t, s))/5 - 2

To solve for laplace(I1(t),t,s) and laplace(Q(t),t,s), we make a final
pair of substitutions. First, replace the strings 'laplace(I1(t),t,s)"' and
'laplace(Q(t),t,s)' by the syms LI1 and LQ, using

NI1 =...
subs(NI1,{'laplace(If(t),t,s)', 'laplace(Q(t),t,s)"'},{LI1,LQ})

to obtain

NI1 =
(5*LI1)/4 + LI1*s + (5*LQ*s)/4 - 35/2

Collecting terms

NI1 = collect(NI1,LI1)
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gives

NI1 =
(s + 5/4)*LI1 + (5*LQ*s)/4 - 35/2

A similar string substitution

NG = ...
subs(NQ, {'laplace(I1(t),t,s)"', " 'laplace(Q(t),t,s)"'},{LI1,LQ})

yields

NQ =
(4*LQ)/5 - (2*LI1)/5 + LQ*s - 1/(5*(s"2 + 1)) - 2

which, after collecting terms,

NQ = collect(NQ,LQ)
gives
NQ =
(s + 4/5)*LQ - (2*LI1)/5 - 1/(5*(s"2 + 1)) - 2

Now, solving for LI1 and LQ
[LI1, LQ] = solve(NI1, NQ, LI1, LQ)
we obtain

LI1 =
(300*s"3 + 280*s"2 + 295*s + 280)/(20*s"4 + 51*s"3 + 40*s"2 + 51*s + 20)

La =
(40*s"3 + 190*s"2 + 44*s + 195)/(20*s"4 + 51*s"3 + 40*s"2 + 51*s + 20)

To recover I1 and Q we need to compute the inverse Laplace transform of LI1
and LQ. Inverting LI1

I1 = ilaplace(LI1, s, t)

produces
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I1 =
(15*(cosh((1001~(1/2)*t)/40)

- (293*1001~(1/2)*sinh((1001~(1/2)*t)/40))/21879))/exp((51*t)/40)
- (5*sin(t)) /51

Inverting LQ

Q = ilaplace(LQ, s, t)

yields

Q=
(4*sin(t))/51 - (5*cos(t))/51 + (107*(cosh((1001~(1/2)*t)/40)
+ (2039*1001~(1/2)*sinh( (1001~ (1/2)*t)/40))/15301))/(51*exp((51*t)/40))

Now let’s plot the current I1(t) and charge Q(t) in two different time
domains, 0 <t <10 and 5 <t < 25. The statements

subplot(2,2,1); ezplot(I1,[0,10]);

title('Current'); ylabel('I1(t)'); grid

subplot(2,2,2); ezplot(Q,[0,10]);

title('Charge'); ylabel('Q(t)'); grid

subplot(2,2,3); ezplot(I1,[5,25]);

title('Current'); ylabel('I1(t)'); grid
text(7,0.25, " 'Transient'); text(16,0.125,'Steady State');
subplot(2,2,4); ezplot(Q,[5,25]);

title('Charge'); ylabel('Q(t)'); grid

text(7,0.25, 'Transient'); text(15,0.16,'Steady State');

generate the desired plots
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Note that the circuit’s behavior, which appears to be exponential decay in
the short term, turns out to be oscillatory in the long term. The apparent
discrepancy arises because the circuit’s behavior actually has two components:
an exponential part that decays rapidly (the “transient” component) and an
oscillatory part that persists (the “steady-state” component).

The Z- and Inverse Z-transforms
The (one-sided) z-transform of a function f(n) is defined as

ZIfl@)= 3 fz".

n=0

The notation Z[f] refers to the z-transform of f at z. Let R be a positive number
so that the function g(2) is analytic on and outside the circle |z| = R. Then
the inverse z-transform (IZT) of g at n is defined as
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Z 1 gln) = = 95 222" dz, n=1,2,...
2L s

The notation Z7![f] means the IZT of f at n. The Symbolic Math Toolbox
commands ztrans and iztrans apply the z-transform and IZT to symbolic
expressions, respectively. See ztrans and iztrans for tables showing various
mathematical representations of the z-transform and inverse z-transform and
their Symbolic Math Toolbox counterparts.

The z-transform is often used to solve difference equations. In particular,
consider th